• 제목/요약/키워드: Convolutional Neural Networks

검색결과 666건 처리시간 0.024초

Transfer learning for crack detection in concrete structures: Evaluation of four models

  • Ali Bagheri;Mohammadreza Mosalmanyazdi;Hasanali Mosalmanyazdi
    • Structural Engineering and Mechanics
    • /
    • 제91권2호
    • /
    • pp.163-175
    • /
    • 2024
  • The objective of this research is to improve public safety in civil engineering by recognizing fractures in concrete structures quickly and correctly. The study offers a new crack detection method based on advanced image processing and machine learning techniques, specifically transfer learning with convolutional neural networks (CNNs). Four pre-trained models (VGG16, AlexNet, ResNet18, and DenseNet161) were fine-tuned to detect fractures in concrete surfaces. These models constantly produced accuracy rates greater than 80%, showing their ability to automate fracture identification and potentially reduce structural failure costs. Furthermore, the study expands its scope beyond crack detection to identify concrete health, using a dataset with a wide range of surface defects and anomalies including cracks. Notably, using VGG16, which was chosen as the most effective network architecture from the first phase, the study achieves excellent accuracy in classifying concrete health, demonstrating the model's satisfactorily performance even in more complex scenarios.

딥 뉴럴네트워크 기반의 소리 이벤트 검출 (Sound Event Detection based on Deep Neural Networks)

  • 정석환;정용주
    • 한국전자통신학회논문지
    • /
    • 제14권2호
    • /
    • pp.389-396
    • /
    • 2019
  • 본 논문에서는 다양한 구조의 딥 뉴럴 네트워크를 소리 이벤트 검출을 위하여 적용하였으며 공통의 오디오 데이터베이스를 이용하여 그들 간의 성능을 비교하였다. FNN, CNN, RNN 그리고 CRNN이 주어진 오디오데이터베이스 및 딥 뉴럴 네트워크의 구조에 최적화된 하이퍼파라미터 값을 이용하여 구현되었다. 구현된 방식 중에서 CRNN이 모든 테스트 환경에서 가장 좋은 성능을 보였으며 그 다음으로 CNN의 성능이 우수함을 알 수 있었다. RNN은 오디오 신호에서의 시간 상관관계를 잘 추적하는 장점에도 불구하고 CNN 과 CRNN에 비해서 저조한 성능을 보임을 확인할 수 있었다.

DEXA에서 딥러닝 기반의 척골 및 요골 자동 분할 모델 (Automated Ulna and Radius Segmentation model based on Deep Learning on DEXA)

  • 김영재;박성진;김경래;김광기
    • 한국멀티미디어학회논문지
    • /
    • 제21권12호
    • /
    • pp.1407-1416
    • /
    • 2018
  • The purpose of this study was to train a model for the ulna and radius bone segmentation based on Convolutional Neural Networks and to verify the segmentation model. The data consisted of 840 training data, 210 tuning data, and 200 verification data. The learning model for the ulna and radius bone bwas based on U-Net (19 convolutional and 8 maximum pooling) and trained with 8 batch sizes, 0.0001 learning rate, and 200 epochs. As a result, the average sensitivity of the training data was 0.998, the specificity was 0.972, the accuracy was 0.979, and the Dice's similarity coefficient was 0.968. In the validation data, the average sensitivity was 0.961, specificity was 0.978, accuracy was 0.972, and Dice's similarity coefficient was 0.961. The performance of deep convolutional neural network based models for the segmentation was good for ulna and radius bone.

SDCN: Synchronized Depthwise Separable Convolutional Neural Network for Single Image Super-Resolution

  • Muhammad, Wazir;Hussain, Ayaz;Shah, Syed Ali Raza;Shah, Jalal;Bhutto, Zuhaibuddin;Thaheem, Imdadullah;Ali, Shamshad;Masrour, Salman
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.17-22
    • /
    • 2021
  • Recently, image super-resolution techniques used in convolutional neural networks (CNN) have led to remarkable performance in the research area of digital image processing applications and computer vision tasks. Convolutional layers stacked on top of each other can design a more complex network architecture, but they also use more memory in terms of the number of parameters and introduce the vanishing gradient problem during training. Furthermore, earlier approaches of single image super-resolution used interpolation technique as a pre-processing stage to upscale the low-resolution image into HR image. The design of these approaches is simple, but not effective and insert the newer unwanted pixels (noises) in the reconstructed HR image. In this paper, authors are propose a novel single image super-resolution architecture based on synchronized depthwise separable convolution with Dense Skip Connection Block (DSCB). In addition, unlike existing SR methods that only rely on single path, but our proposed method used the synchronizes path for generating the SISR image. Extensive quantitative and qualitative experiments show that our method (SDCN) achieves promising improvements than other state-of-the-art methods.

Accurate Human Localization for Automatic Labelling of Human from Fisheye Images

  • Than, Van Pha;Nguyen, Thanh Binh;Chung, Sun-Tae
    • 한국멀티미디어학회논문지
    • /
    • 제20권5호
    • /
    • pp.769-781
    • /
    • 2017
  • Deep learning networks like Convolutional Neural Networks (CNNs) show successful performances in many computer vision applications such as image classification, object detection, and so on. For implementation of deep learning networks in embedded system with limited processing power and memory, deep learning network may need to be simplified. However, simplified deep learning network cannot learn every possible scene. One realistic strategy for embedded deep learning network is to construct a simplified deep learning network model optimized for the scene images of the installation place. Then, automatic training will be necessitated for commercialization. In this paper, as an intermediate step toward automatic training under fisheye camera environments, we study more precise human localization in fisheye images, and propose an accurate human localization method, Automatic Ground-Truth Labelling Method (AGTLM). AGTLM first localizes candidate human object bounding boxes by utilizing GoogLeNet-LSTM approach, and after reassurance process by GoogLeNet-based CNN network, finally refines them more correctly and precisely(tightly) by applying saliency object detection technique. The performance improvement of the proposed human localization method, AGTLM with respect to accuracy and tightness is shown through several experiments.

합성곱 신경망을 이용한 딥러닝 기반의 프레임 동기 기법 (Deep Learning based Frame Synchronization Using Convolutional Neural Network)

  • 이의수;정의림
    • 한국정보통신학회논문지
    • /
    • 제24권4호
    • /
    • pp.501-507
    • /
    • 2020
  • 본 논문에서는 합성곱 신경망(CNN)에 기반한 프레임 동기 기법을 제안한다. 기존의 프레임 동기 기법은 프리앰블과 수신 신호 사이의 상관을 통해 수신 신호와 프리앰블이 일치하는 지점을 찾는다. 제안하는 기법은 1차원 벡터로 이루어진 상관기 출력 신호를 2차원 행렬로 재구성하며, 이 2차원 행렬을 합성곱 신경망에 입력하고 합성곱 신경망은 프레임 도착 지점을 추정한다. 구체적으로 가산 백색 가우스 잡음(AWGN) 환경에서 무작위로 도착하는 수신 신호를 생성하여 학습 데이터를 만들고, 이 학습 데이터로 합성곱 신경망을 학습시킨다. 컴퓨터 모의실험을 통해 기존의 동기 기법과 제안하는 기법의 프레임 동기 오류 확률을 다양한 신호 대 잡음 비(SNR)에서 비교한다. 모의실험 결과는 제안하는 합성곱 신경망을 이용한 프레임 동기 기법이 기존 기법 대비 약 2dB 우수함을 보인다.

Potential role of artificial intelligence in craniofacial surgery

  • Ryu, Jeong Yeop;Chung, Ho Yun;Choi, Kang Young
    • 대한두개안면성형외과학회지
    • /
    • 제22권5호
    • /
    • pp.223-231
    • /
    • 2021
  • The field of artificial intelligence (AI) is rapidly advancing, and AI models are increasingly applied in the medical field, especially in medical imaging, pathology, natural language processing, and biosignal analysis. On the basis of these advances, telemedicine, which allows people to receive medical services outside of hospitals or clinics, is also developing in many countries. The mechanisms of deep learning used in medical AI include convolutional neural networks, residual neural networks, and generative adversarial networks. Herein, we investigate the possibility of using these AI methods in the field of craniofacial surgery, with potential applications including craniofacial trauma, congenital anomalies, and cosmetic surgery.

딥 컨볼루셔널 인코더-디코더 네트워크를 이용한 망막 OCT 영상의 층 분할 (Layer Segmentation of Retinal OCT Images using Deep Convolutional Encoder-Decoder Network)

  • 권오흠;송민규;송하주;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제22권11호
    • /
    • pp.1269-1279
    • /
    • 2019
  • In medical image analysis, segmentation is considered as a vital process since it partitions an image into coherent parts and extracts interesting objects from the image. In this paper, we consider automatic segmentations of OCT retinal images to find six layer boundaries using convolutional neural networks. Segmenting retinal images by layer boundaries is very important in diagnosing and predicting progress of eye diseases including diabetic retinopathy, glaucoma, and AMD (age-related macular degeneration). We applied well-known CNN architecture for general image segmentation, called Segnet, U-net, and CNN-S into this problem. We also proposed a shortest path-based algorithm for finding the layer boundaries from the outputs of Segnet and U-net. We analysed their performance on public OCT image data set. The experimental results show that the Segnet combined with the proposed shortest path-based boundary finding algorithm outperforms other two networks.

인셉션 모듈 기반 컨볼루션 신경망을 이용한 얼굴 연령 예측 (Facial Age Estimation Using Convolutional Neural Networks Based on Inception Modules)

  • ;조현종
    • 전기학회논문지
    • /
    • 제67권9호
    • /
    • pp.1224-1231
    • /
    • 2018
  • Automatic age estimation has been used in many social network applications, practical commercial applications, and human-computer interaction visual-surveillance biometrics. However, it has rarely been explored. In this paper, we propose an automatic age estimation system, which includes face detection and convolutional deep learning based on an inception module. The latter is a 22-layer-deep network that serves as the particular category of the inception design. To evaluate the proposed approach, we use 4,000 images of eight different age groups from the Adience age dataset. k-fold cross-validation (k = 5) is applied. A comparison of the performance of the proposed work and recent related methods is presented. The results show that the proposed method significantly outperforms existing methods in terms of the exact accuracy and off-by-one accuracy. The off-by-one accuracy is when the result is off by one adjacent age label to the above or below. For the exact accuracy, the age label of "60+" is classified with the highest accuracy of 76%.

Convolutional Neural Networks기반 항공영상 영역분할 및 분류 (Aerial Scene Labeling Based on Convolutional Neural Networks)

  • 나종필;황승준;박승제;백중환
    • 한국항행학회논문지
    • /
    • 제19권6호
    • /
    • pp.484-491
    • /
    • 2015
  • 항공영상은 디지털 광학 영상 기술의 성장과 무인기(UAV)의 발달로 인하여 영상의 도입 및 공급이 크게 증가하였고, 이러한 항공영상 데이터를 기반으로 지상의 속성 추출, 분류, 변화탐지, 영상 융합, 지도 제작 형태로 활용되고 있다. 특히, 영상분석 및 활용에 있어 딥 러닝 알고리즘은 패턴인식 분야의 한계를 극복하는 새로운 패러다임을 보여주고 있다. 본 논문은 딥 러닝 알고리즘인 ConvNet기반으로 항공영상의 영역분할 및 분류 결과를 통한 더욱더 넓은 범위와 다양한 분야에 적용할 수 있는 가능성을 제시한다. 학습데이터는 도로, 건물, 평지, 숲 총 3000개 4-클래스로 구축하였고 클래스 별로 일정한 패턴을 가지고 있어 특징 벡터맵을 통한 결과가 서로 다르게 나옴을 확인할 수 있다. 본 연구의 알고리즘은 크게 두 가지로 구성 되어 있는데 특징추출은 ConvNet기반으로 2개의 층을 쌓았고, 분류 및 학습과정으로 다층 퍼셉트론과 로지스틱회귀 알고리즘을 활용하여 특징들을 분류 및 학습시켰다.