• 제목/요약/키워드: Converted Ultimate Strength

검색결과 7건 처리시간 0.016초

강도비를 적용한 Rice-저항곡선과 변형경화를 고려한 $J_{\delta}$-저항곡선과의 비교 (On Reliability and Comparison of $J_{Rice}$-Resistance considering Optimal Strength Ratio and $J_{\delta}$-Resistance Curves converted from CTOD using Appropriate Strength chosen according to Strain Hardening Level)

  • 장석기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.59-67
    • /
    • 2002
  • The comparison of $J_{Rice}$-resistance considering a few strength ratio in Rice J-integral formula and $J_{\delta}$-resistance curves converted from experimental CTOD using appropriate strength chosen according to strain hardening level, n=10.6 (A533B steel) and n=8.1 (BS4360 steel) is carried out. The optimal dimensionless strength ratio like the factor of revision, (see full text)reflecting strain hardening level in Rice\`s experimental formula is found out and the reliability of appropriate reference strength chosen according to strain hardening level in different materials is investigated through doing that CTOD is transformed from $J_{\delta}$-integral using relationship between J-integral and CTOD. The results are as follows; 1) The optimal factor of revision is when m equals to 3 in (see full text) for Rice's and the above optimal factor of revision multiplies by coefficient, η in Rice's experimental formula instead of n=2, 2) and the pertinent reference strength for high strain hardening material like BS4360 steel is ultimate strength, $\sigma_{u}$ and for material like A533B steel is ultimate-flow strength, $\sigma_{u-f}$. The incompatible of the behavior of both experimental J-resistance curves using Rice's formula and CTOD-resistance curves for A533B and BS4360 steel by Gordon, et al., could be corrected using the optimal factor of revision in Rice\`s and the pertinent reference strength in J=$m_{j}$${\times}$$\sigma_{i}$${\times}$CTOD.

탄소섬유/에폭시 복합재료의 잔류강도 저하해석에 의한 피로수명 평가 (Evaluation of the Fatigue Life for Carbon/Epoxy Composite Material by the Residual Strength Degradation Analysis)

  • 심봉식;성낙원;옹장우
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1908-1918
    • /
    • 1991
  • 본 연구에서는 피로 잔류강도저하(fatigue residual strength degradation) 개념을 이용하여 복합재료의 잔류강도와 피로수명을 예측하고 실험을 통하여 비교 평 가하였으며, 설계시 고려되어야 할 인자를 파악하여 파손방지를 위한 유한 수명설계 및 손상허용설계의 기본자료를 집적함으로서 새로운 소재인 탄소섬유 강화 복합재료의 신뢰성 향상을 위한 개발과 고강도 경량화를 위한 이용설계에 활용할 수 있도록 하는 데 그 목적이 있다.

잔류강도 저하모델의 파라미터결정법에 따른 피로수명예측 (The Prediction of Fatigue Life According to the Determination of the Parameter in Residual Strength Degradation Model)

  • 김도식;김정규
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2053-2061
    • /
    • 1994
  • The static and fatigue tensile tests have been conduted to predict the fatigue life of 8-harness satin woven and plain woven carbon/epoxy composite plates containing a circular hole. A fatigue residual strength degradation model, based on the assumption that the residual strength for unnotched specimen decreases monotonically, has been applied to predict statistically the fatigue life of materials used in this study. To determine the parameters(c, b and K) of the residual strength degradation model, the minimization technique and the maximum likelihood method are used. Agreement of the converted ultimate strength by using the minimization technique with the static ultimate strength is reasonably good. Therefore, the minimization technique is more adjustable in the determination of the parameter and the prediction of the fatigue life than the maximum likelihood method.

Closed form ultimate strength of multi-rectangle reinforced concrete sections under axial load and biaxial bending

  • da Silva, V. Dias;Barros, M.H.F.M.;Julio, E.N.B.S.;Ferreira, C.C.
    • Computers and Concrete
    • /
    • 제6권6호
    • /
    • pp.505-521
    • /
    • 2009
  • The analysis of prismatic members made of reinforced concrete under inclined bending, especially the computation of ultimate loads, is a pronounced non-linear problem which is frequently solved by discretizing the stress distribution in the cross-section using interpolation functions. In the approach described in the present contribution the exact analytical stress distribution is used instead. The obtained expressions are integrated by means of a symbolic manipulation package and automatically converted to optimized Fortran code. The direct problem-computation of ultimate internal forces given the position of the neutral axis-is first described. Subsequently, two kinds of inverse problem are treated: the computation of rupture envelops and the dimensioning of reinforcement, given design internal forces. An iterative Newton-Raphson procedure is used. Examples are presented.

Theoretical Development and Design Aids for Expansion Joint Spacings

  • Lee, Hong-Jae;Lee, Cha-Don
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.101-111
    • /
    • 2000
  • It has been a well known fact that buildings having inappropriate expansion joints in their spacings may be subject to exterior damages due to extensive cracks on the outer walls under service loads and structural damages due to excessive moment induced by temperature changes at ultimate load conditions. Unfortunately, consistent code provisions are unavailable regarding spacings of expansion joints from different foreign structural codes. And a more serious problem is that no quantitative measurements on spacings is given in our codes for building structures. In order to establish a rational guideline on the spacing of expansion joints, theoretical approaches are taken in this study. The developed theoretical formula is, then, converted to a design chart for structural designers' convenience in its use. The chart considers both service and ultimate load stages.

  • PDF

콘크리트 모듈러 도로 축하중 거동 분석을 통한 설계 타당성 검증 (Design Validation through Analysis of Concrete Modular Road Behavior under Static Axial Loads)

  • 남정희;김우석;김기현;김연복
    • 한국도로학회논문집
    • /
    • 제17권6호
    • /
    • pp.37-45
    • /
    • 2015
  • PURPOSES : The purpose of this study is to validate the design criteria of the concrete modular road system, which is a new semi-bridge-type concept road, through a comparison of numerical analysis results and actual loading test results under static axial loads. METHODS : To design the semi-bridge-type modular road, both the bridge design code and the concrete structural design code were adopted. The standard truck load (KL-510) was applied as the major traffic vehicle for the design loading condition. The dimension of the modular slab was designed in consideration of self-weight, axial load, environmental load, and combined loads, with ultimate limit state coefficients. The ANSYS APDL (2010) program was used for case studies of center and edge loading, and the analysis results were compared with the actual mock-up test results. RESULTS : A full-scale mock-up test was successfully conducted. The maximum longitudinal steel strains were measured as about 35 and 83.5 micro-strain (within elastic range) at center and edge loading locations, respectively, under a 100 kN dual-wheel loading condition by accelerating pavement tester. CONCLUSIONS : Based on the results of the comparison between the numerical analysis and the full-scale test, the maximum converted stress range at the edge location is 32~51% of the required standard flexural strength under the two times over-weight loading condition. In the case of edge loading, the maximum converted stresses from the Westergaard equation, the ANSYS APDL analysis, and the mock-up test are 1.95, 1.7, and 2.3 times of that of the center loading case, respectively. The primary reason for this difference is related to the assumption of the boundary conditions of the vertical connection between the slab module and the crossbeam module. Even though more research is required to fully define the boundary conditions, the proposed design criteria for the concrete modular road finally seems to be reasonable.

가변 온도 양생 방법을 이용한 콘크리트 성숙도 (Maturity)의 실험적 고찰 (Concrete Maturity Method Using Variable Temperature Curing: Experimental Study)

  • 김태완;김광수;한경봉;박선규;오석민
    • 콘크리트학회논문집
    • /
    • 제19권6호
    • /
    • pp.693-700
    • /
    • 2007
  • 성숙도는 콘크리트의 강도발현에 대한 시간과 온도의 효과를 산정하는데 사용된다. 이 논문의 목적은 변화하는 양생 온도가 성숙도 개념을 이용하여 보통 강도와 고강도의 강도발현에 어떻게 영향을 미치는지 보이는 것이다. 보통 강도콘크리트에 대한 실험 결과에서 변화하는 양생 온도의 최고점 시간이 달라짐에 따라 강도발현의 교차 (cross-over)효과가 나타난다. 그러나 이 교차 효과는 콘크리트의 실제 재령이 온도를 고려한 등가 재령 (equivalent age)로 전환된 이후에는 찾아보기 힘들다. 다른 말로 표현하자면, 기존의 성숙도는 양생 온도의 최고점에 대응하는 시간의 변화에는 민감하지 않으나 그 양생 온도 최고점의 크기에는 민감하다. 고강도콘크리트에 대해서는 그 결과가 결론을 내리기가 쉽지 않다. 보통강도콘크리트에 대한 실험 결과는 기존의 성숙도가 후기 강도에 대해 초기양생 온도에 대한 효과를 고려하지 못한다는 제한을 언급한 ASTM과 동일함이 있다. 그래서 이 연구는 향상된 콘크리트 성숙도에 대한 기초로서 사용될 것이다.