• Title/Summary/Keyword: Conversion of Applications

검색결과 757건 처리시간 0.026초

Insights into Enzyme Reactions with Redox Cofactors in Biological Conversion of CO2

  • Du-Kyeong Kang;Seung-Hwa Kim;Jung-Hoon Sohn;Bong Hyun Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권11호
    • /
    • pp.1403-1411
    • /
    • 2023
  • Carbon dioxide (CO2) is the most abundant component of greenhouse gases (GHGs) and directly creates environmental issues such as global warming and climate change. Carbon capture and storage have been proposed mainly to solve the problem of increasing CO2 concentration in the atmosphere; however, more emphasis has recently been placed on its use. Among the many methods of using CO2, one of the key environmentally friendly technologies involves biologically converting CO2 into other organic substances such as biofuels, chemicals, and biomass via various metabolic pathways. Although an efficient biocatalyst for industrial applications has not yet been developed, biological CO2 conversion is the needed direction. To this end, this review briefly summarizes seven known natural CO2 fixation pathways according to carbon number and describes recent studies in which natural CO2 assimilation systems have been applied to heterogeneous in vivo and in vitro systems. In addition, studies on the production of methanol through the reduction of CO2 are introduced. The importance of redox cofactors, which are often overlooked in the CO2 assimilation reaction by enzymes, is presented; methods for their recycling are proposed. Although more research is needed, biological CO2 conversion will play an important role in reducing GHG emissions and producing useful substances in terms of resource cycling.

The Fabrication of Ion Exchange Membrane and Its Application to Energy Systems (고분자 이온교환막의 제조와 이온교환막을 이용한 에너지 공정)

  • Kim, Jae-Hun;Ryu, Seungbo;Moon, Seung-Hyeon
    • Membrane Journal
    • /
    • 제30권2호
    • /
    • pp.79-96
    • /
    • 2020
  • Secondary energy conversion systems have been briskly developed owing to environmental issue and problems of fossil fuel. They are basically operated based on electro-chemical systems. In addition, ion exchange membranes are one of the significant factors to determine performance in their systems. Therefore, the ion exchange membranes in suitable conditions must be developed to improve the performance for the electro-chemical systems. These ion exchange membranes can be classified into various types such as cation exchange membrane, anion exchange membrane and bipolar membrane. Their membranes have distinct characteristics according to the chemical, physical and morphological structure. In this review, the types of ion exchange membranes and their fabrication processes are described with main characteristics. Moreover, applications of ion exchange membranes in newly developed energy conversion systems such as reverse electrodialysis, redox flow battery and water electrolysis process are described including their roles and requirements.

Efficiency improvement of a DC/DC converter using LTCC substrate

  • Jung, Dong Yun;Jang, Hyun Gyu;Kim, Minki;Park, Junbo;Jun, Chi-Hoon;Park, Jong Moon;Ko, Sang Choon
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.811-819
    • /
    • 2019
  • We propose a substrate with high thermal conductivity, manufactured by the low-temperature co-fired ceramic (LTCC) multilayer circuit process technology, as a new DC/DC converter platform for power electronics applications. We compare the reliability and power conversion efficiency of a converter using the LTCC substrate with the one using a conventional printed circuit board (PCB) substrate, to demonstrate the superior characteristics of the LTCC substrates. The power conversion efficiencies of the LTCC- and PCB-based synchronous buck converters are 95.5% and 94.5%, respectively, while those of nonsynchronous buck converters are 92.5% and 91.3%, respectively, at an output power of 100 W. To verify the reliability of the LTCC-based converter, two types of tests were conducted. Storage temperature tests were conducted at -20 ℃ and 85 ℃ for 100 h each. The variation in efficiency after the tests was less than 0.3%. A working temperature test was conducted for 60 min, and the temperature of the converter was saturated at 58.2 ℃ without a decrease in efficiency. These results demonstrate the applicability of LTCC as a substrate for power conversion systems.

A characteristics study on the Second-harmonic generation conversion efficiency of Pulsed Nd:YAG Laser adopted Superposition multiple Mesh Networks (중첩다단 메쉬회로를 적용한 펄스형 Nd:YAG 레이저의 2차 고조파 변환효율에 관한 특성연구)

  • 김휘영
    • Journal of the Korea Computer Industry Society
    • /
    • 제2권4호
    • /
    • pp.565-572
    • /
    • 2001
  • At the most recent years, laser medical instruments, laser applications and laser nuclear fusion need strong visible light and ultraviolet rays. Nonlinear optical devices, such as harmonic generators and parametric oscillators, provide a means of extending the frequency range of available laser sources. Frequency conversion is a useful technique for extending the utility of high-power lasers. It utilizes the nonlinear optical response of an optical medium in intense radiation fields to generate new frequencies. These progresses have been used to generate high-power radiation in all spectral regions, from the ultraviolet to the far infrared. Optical parametric oscillators and amplifiers generate two waves of lower frequency They are capable of generating a range of wavelengths from a single frequency source, in some cases spanning the entire visible and near infrared regions. Consequently, in order to obtain the green light, the pulsed Nd:YAG laser using multiple-mesh PFN(Pulsed Forming Network) method with Nonlinear optical device was adopted. We compared the current pulseshapes with the laser output energy, and conversion efficiency.

  • PDF

13.56~915 MHz CMOS Rectifier Using Bootstrapping and Active Body Biasing (부트스트래핑과 능동 몸체 바이어싱을 이용한 13.56~915 MHz용 CMOS 정류기)

  • Jin, Ho Jeong;Cho, Choon Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제26권10호
    • /
    • pp.932-935
    • /
    • 2015
  • This paper proposes a rectifier using bootstrapping and active body biasing in $0.11{\mu}m$ RF CMOS process. The proposed rectifier employs the full-wave rectifying structure with cross coupling and increases the power conversion efficiency by reducing the threshold voltage and leakage current using bootstrapping and active bias biasing. Also, it has been designed to be applied to a wide range of applications from 13.56 MHz used in wireless power transmission to 915 MHz used in RFID. As a measured result, 80 % of power conversion efficiency is obtained when the input power is 0 dBm at $10k{\Omega}$ load resistance and 13.56 MHz. Also 40 % of power conversion efficiency is shown in 915 MHz.

A 3D graphic pipelines with an efficient clipping algorithm (효율적인 클리핑 기능을 갖는 3차원 그래픽 파이프라인 구조)

  • Lee, Chan-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • 제45권8호
    • /
    • pp.61-66
    • /
    • 2008
  • Recently, portable devices which require small area and low power consumption employ applications using 3D graphics such as 3D games and 3D graphical user interfaces. We propose an efficient clipping engine algorithm which is suitable in 3D graphics pipeline. The clipping operation is divided into two steps: one is the selection process in the transformation engine and the other is the pixel clipping process in the scan conversion unit. The clipping operation is possible with addition of simple comparator. The clipping for the Y-axis is achieved in the edge walk stage and that for the X and Z-axis is performed in the span processing. The proposed clipping algorithm reduces the operation cycles and the area of of 3D graphics pipelines. We designed a 3D graphics pipeline with the proposed clipping algorithm using Verilog-HDL and verifies the operation using an FPGA.

Study on the Characteristics of Nitrous Oxide Catalytic Decomposition for Propellant Applications (추진제 응용을 위한 아산화질소의 촉매 분해 특성 연구)

  • Kim, Tae-Gyu;Yong, Sung-Ju;Park, Dae-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제38권4호
    • /
    • pp.369-375
    • /
    • 2010
  • The study on the characteristics of nitrous oxide catalytic decomposition was carried out to utilize the nitrous oxide as a propellant. The Pt, Ir and Ru were synthesized to select a high performance catalyst for the nitrous oxide decomposition reaction. The respective catalyst precursors were loaded in the $Al_2O_3$ support using an wet impregnation method. The $N_2O$ conversion as a variation of space velocity and reaction temperature was measured using a tubular reactor. The catalyst loss was measured to evaluate the durability of catalysts after the reaction at $800^{\circ}C$ for 2 hours. The $N_2O$ conversion was increased at the decrease of space velocity and at the increase of temperature. The Ru/$Al_2O_3$ catalyst had the highest $N_2O$ conversion at low temperature and the best durability.

Decrement Models with an Application to Variable Annuities under Fractional Age Distributions (탈퇴원인별 상이한 소수연령 분포에서 다중탈퇴율 계산과 변액연금에 응용)

  • Lee, Hang-Suck
    • Communications for Statistical Applications and Methods
    • /
    • 제16권1호
    • /
    • pp.85-102
    • /
    • 2009
  • This paper derives conversion formulas from yearly-based absolute rates of decrements to monthly-based rates of decrement due to cause J under fractional age distributions. Next, it suggests conversion formulas from monthly-based absolute rates of decrements to monthly-based rates of decrement due to cause j under fractional age distributions. In addition, it applies the conversion formulas including a dynamic lapse rate model to variable annuities. Some numerical examples are discussed.

Research on High-Efficiency Power Conversion Structure for Railroad Auxiliary Power Supply(APS) System (철도차량 보조전원장치의 효율향상을 위한 새로운 전력변환회로 구조 연구)

  • Cho, In-Ho;Jung, Shin-Myung;Lee, Byoung-Hee
    • Journal of the Korean Society for Railway
    • /
    • 제19권3호
    • /
    • pp.297-303
    • /
    • 2016
  • This paper introduces auxiliary power supply systems (APS) for railroad applications and proposes a new power conversion structure for highly-efficient and lightweight APS systems. The proposed structure focuses on an improvement of the power density in APS. It eliminates unnecessary power conversion stages in the conventional APS structure by modulating the dc/dc converter circuit and the structure of the system. The dc/dc converter circuit used in the proposed structure is based on a multi-level half-bridge converter, a widely used topology in railroad APS applications; a flying capacitor is newly added to the conventional circuit. The added capacitor is used not only to enhance the soft switching condition of the switches, but also so that the new pantograph will have a side voltage source of a battery charger in the APS structure. Since the battery charger uses the pantograph side voltage source in the proposed structure, rather than using the output of the main dc/dc converter in the conventional structure, the size and efficiency of the main dc/dc converter are reduced and increased, respectively. To verify the effectiveness of the proposed structure, simulation results will be presented with metropolitan transit APS specifications.

Design of 2nd-harmonic Quadrature Mixer for Ultra Wideband(UWB) Systems (2차 고조파를 이용한 UWB 시스템용 쿼드러쳐 혼합기 설계)

  • Jung, Goo-Young;Lim, Jong-Hyuk;Choi, Byung-Hyun;Yun, Tae-Yeoul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제17권12호
    • /
    • pp.1156-1163
    • /
    • 2006
  • This paper presents an ultra wideband(UWB) direct conversion mixer for IEEE 802.15.3a applications with simulation and measurement results. Since the direct conversion mixing causes dc-offset and even-order distortion, the proposed mixer adopts an anti-parallel diode pairs(APDPs) to solve these problems. The proposed mixer consists of an in-phase wilkinson power divider over $3.1{\sim}4.8GHz$, a wideband $45^{\circ}$ power divider over $1.5{\sim}2.4GHz$, and miniatured band pass filters(BPFs) for RF-LO isolations. The conversion loss is optimized with impedance matchings between APDPs and wideband components. The measured mixer shows the conversion loss of 13.5 dB, input third-order intercept-point($IIP_3$) of 7 dBm, and 1-dB gam compression point($P_{1dB}$) of -4 dBm. Quadrature(I/Q) outputs have the magnitude difference of about 1 dB and phase difference of ${\pm}3^{\circ}$.