The purpose of this study was to investigate the gender differences in conversational styles of students. This research based on Quantitative survey and qualitative observation. The quantitative data were collected by questionnaire from 708 respondents who were college students and resided in Sunchon. Statistical methods for the data analysis were frequencies, t-test. The cases of observation were 21. As a result, gender differences were founded in lots of conversational styles. Women showed more tendencies than men In communi-cations to listen, to make relationships, to take care of others, to express intimacy and to make private conversation. Men tended to dominate others, to show off capacities and to make public conversation. This gender differences in conversational styles were related to sex role and major studies. From this results it was proposed that education on gender differences in conversational styles should be developed for students to improve their communication skills and to adapt their changing sex role.
This paper describes a tree-based conversational interface supporting efficient presentation of turn relations on online conversation. Most of conventional conversational interfaces are difficult to make use of formal conversation such as group meeting, decision-making, etc. due to very simplicity of a con versational interface and restriction of data structure of conversational messages. And a tree-based conversational interface supports formal conversation, but they are difficult to present turn relations because of jumpy display by locations of replied turns and distance between replied turns, etc. So this paper suggests a tree-based conversational interface to present efficiently turn relations using XML-based messages with merits of a text-based interface. The suggested conversational interface was implemented by using XML-, DOM, and JDK. And this paper showed that the conversational interface could be applied to conversation system using client- server architecture. Applications for the conversational interface are as follows: collaboration, distance teaming, online game, etc.
The present study examines various pedagogical functions of conversational repair strategies employed by the teacher in the ESL classroom. As part of interactional resources, conversational repair is defined as the treatment of trouble occurring in interactive language use and is originally designed to deal with communication problems. Research on conversational repair has focused on ordinary conversation and organization of repair practices. Studies on more pedagogical functions of repair sequences initiated by the teacher are very few. The data were from five hours of ESL structure classes in an intensive English institute at a large U.S. university. They were closely transcribed and microanalyzed following the conversation-analytic methodology. The analysis found that ESL teachers' repair techniques not only resolve communication problems but they are also designed to serve several important instructional purposes of teaching the target language. They include creating opportunities of comprehensible input, inducing modified comprehensible output from students, guiding and controlling student output, and initiating corrections by initiating repair.
Journal of the Korea Society of Computer and Information
/
v.29
no.10
/
pp.77-87
/
2024
With the recent advancements in artificial intelligence, various chatbots have emerged, efficiently performing everyday tasks such as hotel bookings, news updates, and legal consultations. Particularly, generative chatbots like ChatGPT are expanding their applicability by generating original content in fields such as education, research, and the arts. However, the training of these AI chatbots requires large volumes of conversational text data, such as customer service records, which has led to privacy infringement cases domestically and internationally due to the use of unrefined data. This study proposes a methodology to quantitatively assess the re-identification risk of personal information contained in conversational text data used for training AI chatbots. To validate the proposed methodology, we conducted a case study using synthetic conversational data and carried out a survey with 220 external experts, confirming the significance of the proposed approach.
Journal of the Korea Society of Computer and Information
/
v.28
no.1
/
pp.27-38
/
2023
In this paper, we propose a conversational AI agent based on continual learning that can continuously learn and grow with new data over time. A continual learning-based conversational AI agent consists of three main components: Task manager, User attribute extraction, and Auto-growing knowledge graph. When a task manager finds new data during a conversation with a user, it creates a new task with previously learned knowledge. The user attribute extraction model extracts the user's characteristics from the new task, and the auto-growing knowledge graph continuously learns the new external knowledge. Unlike the existing conversational AI agents that learned based on a limited dataset, our proposed method enables conversations based on continuous user attribute learning and knowledge learning. A conversational AI agent with continual learning technology can respond personally as conversations with users accumulate. And it can respond to new knowledge continuously. This paper validate the possibility of our proposed method through experiments on performance changes in dialogue generation models over time.
Journal of Information Technology Applications and Management
/
v.30
no.4
/
pp.11-28
/
2023
This paper proposes a method of integrating ChatGPT with traditional chatbot systems to enhance conversational artificial intelligence(AI) and create more efficient conversational systems. Traditional chatbot systems are primarily based on classification models and are limited to intent classification and simple response generation. In contrast, ChatGPT is a state-of-the-art AI technology for natural language generation, which can generate more natural and fluent conversations. In this paper, we analyze the business service areas that can be integrated with ChatGPT and traditional chatbots, and present methods for conducting conversational scenarios through case studies of service types. Additionally, we suggest ways to integrate ChatGPT with traditional chatbot systems for intent recognition, conversation flow control, and response generation. We provide a practical implementation example of how to integrate ChatGPT with traditional chatbots, making it easier to understand and build integration methods and actively utilize ChatGPT with existing chatbots.
Previous laboratory studies have shown that prosodic structures are encoded in the modulations of phonetic patterns of speech including suprasegmental as well as segmental features. Drawing on a prosodically annotated large-scale speech data from the Buckeye corpus of conversational speech of American English, the current study first evaluated the reliability of prosody annotation by a large number of ordinary listeners and later examined whether and how prosodic prominence influences the phonetic realization of multiple acoustic parameters in everyday conversational speech. The results showed that all the measures of acoustic parameters including pitch, loudness, duration, and spectral balance are increased when heard as prominent. These findings suggest that prosodic prominence enhances the phonetic characteristics of the acoustic parameters. The results also showed that the degree of phonetic enhancement vary depending on the types of the acoustic parameters. With respect to the formant structure, the findings from the present study more consistently support Sonority Expansion Hypothesis than Hyperarticulation Hypothesis, showing that the lexically stressed vowels are hyperarticulated only when hyperarticulation does not interfere with sonority expansion. Taken all into account, the present study showed that prosodic prominence modulates the phonetic realization of the acoustic parameters to the direction of the phonetic strengthening in everyday conversational speech and ordinary listeners are attentive to such phonetic variation associated with prosody in speech perception. However, the present study also showed that in everyday conversational speech there is no single dominant acoustic measure signaling prosodic prominence and listeners must attend to such small acoustic variation or integrate acoustic information from multiple acoustic parameters in prosody perception.
After COVID-19, communication through online platforms has increased, leading to an accumulation of massive amounts of conversational text data. With the growing importance of summarizing this text data to extract meaningful information, there has been active research on deep learning-based abstractive summarization. However, conversational data, compared to structured texts like news articles, often contains missing or transformed information, necessitating consideration from multiple perspectives due to its unique characteristics. In particular, vocabulary omissions and unrelated expressions in the conversation can hinder effective summarization. Therefore, in this study, we restructured by considering the characteristics of Korean conversational data, fine-tuning a pre-trained text summarization model based on KoBART, and improved conversation data summary perfomance through a refining operation to remove redundant elements from the summary. By restructuring the sentences based on the order of utterances and extracting a central speaker, we combined methods to restructure the conversation around them. As a result, there was about a 4 point improvement in the Rouge-1 score. This study has demonstrated the significance of our conversation restructuring approach, which considers the characteristics of dialogue, in enhancing Korean conversation summarization performance.
Kim, Sunhee;Lee, Jooyoung;Choi, Seo Gyeong;Ji, Seunghun;Kang, Jeemin;Kim, Jongin;Kim, Dohee;Kim, Boryong;Cho, Eungi;Kim, Hojeong;Jang, Jeongmin;Kim, Jun Hyung;Ku, Bon Hyeok;Park, Hyung-Min;Chung, Minhwa
Phonetics and Speech Sciences
/
v.12
no.4
/
pp.81-90
/
2020
This paper describes a method of building Korean conversational speech data in the emergency medical domain and proposes an annotation method for the collected data in order to improve speech recognition performance. To suggest future research directions, baseline speech recognition experiments were conducted by using partial data that were collected and annotated. All voices were recorded at 16-bit resolution at 16 kHz sampling rate. A total of 166 conversations were collected, amounting to 8 hours and 35 minutes. Various information was manually transcribed such as orthography, pronunciation, dialect, noise, and medical information using Praat. Baseline speech recognition experiments were used to depict problems related to speech recognition in the emergency medical domain. The Korean conversational speech data presented in this paper are first-stage data in the emergency medical domain and are expected to be used as training data for developing conversational systems for emergency medical applications.
The goal of this study is finding flow-map in conversation what is going on user and embodied conversational agent by analysing that conversation. Specifically, this study not only find elements of conversation, but also draw out patterns of conversation can be exist for dialogue ability between user and Embodied conversational agent. To do this, we collect data through in-depth one to one interview, and then we analysis collected data to try to find out element of user-agent conversation based on qualitative research refer to the theory of conversation analytics and type of conversation. As a result, six flow map is deducted Especially, the irregular conversation is hard to find in human-human conversation, and the frequency is the most in data. In addition, when elements of interruption came out, be hostile to partner or correct the press conversation. This study can have positive effect to embodied conversation agent developer, user and service offerer because this study find the type of conversation through analysis that between embodied conversational agent and user.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.