• Title/Summary/Keyword: Convergent beam electron diffraction

Search Result 19, Processing Time 0.021 seconds

Applications of quantitative convergent beam electron diffraction measurement for structural characterization (Convergent beam electron diffraction의 정량분석을 응용한 재료의 구조분석)

  • Kim, Gyu-Hyeon;Lee, Min-Hui;Jeong, Sae-Eun;Go, Se-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.176-177
    • /
    • 2014
  • The new algorithm was proposed to quantify symmetry recorded in convergent beam electron diffraction (CBED) patterns and symmetry mapping. The proposed algorithm is based on the normalized cross-correlation coefficient (${\gamma}$) for quantifying the amount of symmetry in a CBED pattern. The quantification and mapping procedures are automatically controlled by the script implemented in Gatan Digital Micrograph$^{(c)}$. We apply the quantitative CBED measurement to a strained Si sample to test the sensitivity to defects.

  • PDF

Phase Identification of Al-Ti Alloys Using Convergent Beam Electron Diffraction Pattern (수렴성 빔 전자회절 도형을 이용한 Al-Ti 합금의 상 분석)

  • Kim, Hye-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.2
    • /
    • pp.149-155
    • /
    • 2001
  • The use of primitive cell volume and zero order Laue (ZOLZ) pattern is proposed to identify phase in a complex microstructure. Single convergent beam electron pattern containing higher order Laue zone ring from a nanosized region is sufficient to calculate the primitive cell volume of the phase, while ZOLZ pattern is used to determine the zone axis of the crystal. A computer program is used to screen out possible phases from the value of measured cell volume from convergent beam electron diffraction (CBED) pattern. Indexing of ZOLZ pattern follows in the program to find the zone axis of the identification from a single CBED pattern. An example of the analysis is given from the rapidly solidified $Al-Al_3Ti$ system.

  • PDF

Principles and Analysis of Electron Diffraction Patterns in Transmission Electron Microscopy : Utilization of Microcomputers (전자회절도형의 원리와 분석 : Microcomputer의 이용)

  • Sung, Chang-Mo
    • Applied Microscopy
    • /
    • v.21 no.1
    • /
    • pp.108-120
    • /
    • 1991
  • Principles of electron diffraction patterns in transmission electron microscope are described for beginners in terms of reciprocal lattices and Ewald sphere. Analysis of both ring patterns and spot patterns are illustrated with practical examples as well as basic calibrations of TEM. Especially convergent beam electron diffraction method is emphasized for the determination of lattice parameters, microstrains, and thickness of thin foil followed by a review of microcomputer programs for the electron diffraction analyses explained in this paper.

  • PDF

Measurements of Lattice Strain in $SiO_2/Si$ Interface Using Convergent Beam Electron Diffraction (수렴성빔 전자회절법을 이용한 $SiO_2/Si$ 계면 부위의 격자 변형량 측정)

  • Kim, Gyeung-Ho;Wu, Hyun-Jeong;Choi, Doo-Jin
    • Applied Microscopy
    • /
    • v.25 no.2
    • /
    • pp.73-79
    • /
    • 1995
  • The oxidation of silicon wafers is an essential step in the fabrication of semiconductor devices. It is known to induce degradation of electrical properties and lattice strain of Si substrate from thermal oxidation process due to charged interface and thermal expansion mismatch from thermally grown SiO, film. In this study, convergent beam electron diffraction technique is employed to directly measure the lattice strains in Si(100) and $4^{\circ}$ - off Si(100) substrates with thermally grown oxide layer at $1200^{\circ}C$ for three hours. The ratios of {773}-{973}/{773}-{953} Higher Order Laue Zone lines were used at [012] zone axis orientation. Lattice parameters of the Si substrate as a function of distance from the interface were determined from the computer simulation of diffraction patterns. Correction value for the accelerating voltage was 0.2kV for the kinematic simulation of the [012]. HOLZ patterns. The change in the lattice strain profile before and after removal of oxide films revealed the magnitudes of intrinsic strain and thermal strain components. It was shown that $4^{\circ}$ -off Si(100) had much lower intrinsic strain as surface steps provide effective sinks for the free Si atoms produced during thermal oxidation. Thermal strain in the Si substrate was in compression very close to the interface and high concentration of Si interstitials appeared to modify the thermal expansion coefficient of Si.

  • PDF

Phase Identification of Nano-Phase Materials using Convergent Beam Electron Diffraction (CBED) Technique

  • Kim, Gyeung-Ho;Ahn, Jae-Pyoung
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.47-56
    • /
    • 2006
  • Improvements are made to existing primitive cell volume measurement method to provide a real-time analysis capability for the phase analysis of nanocrystalline materials. Simplification is introduced in the primitive cell volume calculation leading to fast and reliable method for nano-phase identification and is applied to the phase analysis of Mo-Si-N nanocoating layer. In addition, comparison is made between real-time and film measurements for their accuracy of calculated primitive cell volume values and factors governing the accuracy of the method are determined. About 5% accuracy in primitive cell determination is obtained from camera length calibration and this technique is used to investigate the cell volume variation in WC-TiC core-shell microstructure. In addition to chemical compositional variation in core-shell type structure, primitive cell volume variation reveals additional information on lattice coherency strain across the interface.

Measurement of Lattice Parameter of Primary Si crystal in Rheocast Hypereutectic Al-Si Alloy by Convergent Beam Electron Diffraction Technique (수렴성빔 전자회절법을 이용한 리오캐스팅시킨 과공정 Al-Si합금에서 실리콘초정의 격자상수 측정)

  • Lee, Jung-Ill;Kim, Gyeung-Ho;Lee, Ho-In
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.99-107
    • /
    • 1995
  • The morphological changes of primary solid particles as a function of process time on hypereutectic Al-15.5wt%Si alloy during semi-solid state processing with a shear rate of $200s^{-1}$ are studied. In this alloy, it was observed that primary Si crystals are fragmented at the early stage of stirring and morphologies of primary Si crystals change from faceted to spherical during isothermal shearing for 60 minutes. To understand the role of Al dissolved in the primary Si crystal by shear stress at high temperature, lattice parameters of the primary Si crystals are determined as a variation of high order Laue zone(HOLZ) line positions measured from convergent beam electron diffraction(CBED) pattern. The lattice parameter of the primary Si crystal in the rheocast Al-15.5wt%Si alloy shows tensile strain of about 5 times greater than that of the gravity casting. Increase of the lattice parameter by rheocasting is due to the increased amount of Al dissolved in the primary Si crystal accelerated by shear stress at high temperature. The amounts of solute Al in the primary Si crystal are measured quantitatively by EPMA method to confirm the CBED analysis.

  • PDF

Phase Identification of the Interfacial Reaction Product of $SiC_p/Al$ Composite Using Convergent Beam Electron Diffraction Technique (수렴성 빔 전자회절법을 이용한 $SiC_p/Al$ 복합재에서의 계면 생성물의 상분석)

  • Lee, Jung-Ill;Lee, Jae-Chul;Suk, Hyun-Kwang;Lee, Ho-In
    • Applied Microscopy
    • /
    • v.26 no.1
    • /
    • pp.95-104
    • /
    • 1996
  • A comprehensive methodology to characterize the interfacial reaction products of $SiC_p/2024$ Al composites is introduced on the basis of the experimental results obtained using XRD, SEM and TEM. XRD performed on the electrochemically extracted $SiC_p$ and bulk $SiC_p/2024$ Al composite have shown that the interfacial reaction products consist of $Al_{4}C_3$ having hexagonal crystallographic structure, pure eutectic Si having diamond cubic crystallographic structure, and $CuAl_2$, having tetragonal crystalloraphic structure, respectively. According to the images observed by SEM, $Al_{4}C_3$, which has been reported to have needle shape, has a hexagonal platelet-shape and eutectic Si is found to have a dendritic shape. In addition eutectic $CuAl_2$, was observed to form near interface and/or along the grain boundaries. In order to confirm the results obtained by XRD, the primitive cell volume and reciprocal lattice height of such interfacial reaction products were calculated using the data obtained from convergent beam electron diffraction (CBED) patterns, and then compared with theoretical values.

  • PDF

Sensitivity of quantitative symmetry measurement algorithms for convergent beam electron diffraction technique

  • Hyeongsub So;Ro Woon Lee;Sung Taek Hong;Kyou-Hyun Kim
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.10.1-10.9
    • /
    • 2021
  • We investigate the sensitivity of symmetry quantification algorithms based on the profile R-factor (Rp) and the normalized cross-correlation (NCC) coefficient (γ). A DM (Digital Micrograph©) script embedded in the Gatan digital microscopy software is used to develop the symmetry quantification program. Using the Bloch method, a variety of CBED patterns are simulated and used to investigate the sensitivity of symmetry quantification algorithms. The quantification results show that two symmetry quantification coefficients are significantly sensitive to structural changes even for small strain values of < 1%.