• Title/Summary/Keyword: Convergence of tunnel behaviour

Search Result 7, Processing Time 0.024 seconds

Assessment of time-dependent behaviour of rocks on concrete lining in a large cross-section tunnel

  • Mirzaeiabdolyousefi, Majid;Nikkhah, Majid;Zare, Shokrollah
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • Tunneling in rocks having the time-dependent behavior, causes some difficulties like tunnel convergence and, as a result, pressure on concrete lining; and so instability on this structure. In this paper the time-dependent behaviour of squeezing phenomenon in a large cross section tunnel was investigated as a case study: Alborz tunnel. Then, time-dependent behaviour of Alborz tunnel was evaluated using FLAC2D based on the finite difference numerical method. A Burger-creep viscoelastic model was used in numerical analysis. Using numerical analysis, the long-time effect of squeezing on lining stability was simulated.This study is done for primary lining (for 2 years) and permanent lining (for 100 years), under squeezing situations. The response of lining is discussed base on Thrust Force-Bending Moment and Thrust Force-Shear Force diagrams analysing. The results determined the importance of consideration of time-dependent behaviour of tunnel that structural forces in concrete lining will grow in consider with time pass and after 70 years can cause instability in creepy rock masses section of tunnel. To show the importance of time-dependent behavior consideration of rocks, elastic and Mohr-Coulomb models are evaluated at the end.

Characteristics of Tunnel Convergence Behaviour based on Variation of Rock Mass Rating (암반 등급 변화에 따른 터널 내공 변위 거동 특설)

  • Kim, Kwang-Yeom
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.545-553
    • /
    • 2008
  • Face mapping and displacement monitoring during tunnel construction are the most influential information for the stability assessment of ground and around structures. Especially, the result of face mapping and displacement analysis is essential to the excavation and support design in NATM which is based on the drilling and blasting. However, there have not been so many studies to put those useful information into practice for decision-making process during construction. The study reviewed the tunnel behaviour based on the RMR rating and displacement monitoring when the geological condition of rock mass varies inevitably. The study analysed the crown settlement using convergence equation in order to compensate the disparity induced by the location and time of measurement and found a distinct relation between the geological condition and the line of influence. As a result of analysing the various parameters related to the tunnel convergence according to the geological condition, the study suggested the basic knowledge about the relation between face mapping and displacement behaviour of tunnel.

Theory and Analysis Method of Tunnel Convergence (터널 내공변위의 이론과 계측결과의 분석)

  • 김호영;박의섭
    • Tunnel and Underground Space
    • /
    • v.3 no.1
    • /
    • pp.80-95
    • /
    • 1993
  • Convergence measurements play very important role in the assessment of stability of a tunnel and of the economics of rock reinforcements. The characteristics of convergences are both due to the face advance effect and the time-dependent behaviour of rocks. As the convergence law can be modeled as a specific function of two variables of distance and time, we can determine the type of function and the related parameters from the field measurements. By using the regression method based on the Levengberg-Marquardt algorithm, an analysis of convergence of two different tunnels and one numerical example is described. It is shown that the convergence can be modeled as following function, C(x)=a{1-exp(-bx)} or C(t)=a{1-exp(-bt)} in case of a tunnel excavated in elastic rocks, in case of elasto-plastic or over stressed rocks.

  • PDF

Behaviour Analysis of Crown Collapse under Tunnel Construction After Completing Reinforcement (보강완료 후 시공 중 터널 천단부 붕락 거동 분석)

  • Kim, Nagyoung;Baek, Seungchol;Min, Kyungjun;Kim, Bongsu;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.4
    • /
    • pp.39-46
    • /
    • 2016
  • The final stability analysis of the tunnel structure is generally evaluated by performing site monitoring to determine whether or not the measured value through the convergence after the completion of excavation in the face. When the ground conditions are so poor, the reinforcement around the tunnel was applied for enhancing the stability of tunnels. For the additional tunnel crown collapse or excessive displacement have occurred under construction, correlation analysis were performed for the comparison construction and numeric analyses. In this paper, we investigated the collapse types, tunnel collapse were mostly occurs at the crown and they were analyzed because of the geological conditions in the collapse zone. And also, it was analyzed as being correlated in the crown of tunnel exists a fault fracture zone which extends to the surface part. Thus, in case of ground conditions such as fault fracture zone with a tunnel extending from the crown to the surface, the behavior is larger than the behavior predicted by numerical method.

Estimation for Primary Tunnel Lining Loads

  • Kim, Hak-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.153-204
    • /
    • 1998
  • Prediction of lining loads due to tunnelling is one of the major issues to be addressed in the design of a tunnel. The objective of this study is to investigate rational and realistic design loads on tunnel linings. factors influencing the lining load are summarized and discussed. The instruments for measuring the lining loads are reviewed and discussed because field measurements are often necessary to verify the design methods. Tunnel construction in the City of Edmonton has been very active for storm and sanitary purposes. Since the early 1970's, the city has also been developing an underground Light Rail Transit system. The load measurements obtained from these tunnels are compared with the results from the existing design methods. However, none of the existing methods are totally satisfactory, Therefore, there is some room for improvement in the prediction of lining loads. The convergence-confinement method is reviewed and applied to a case history of a tunnel in Edmonton. The convergence curves are obtained from 2-D finite element analyses using three different material models and theoretical equations. The limitation of the convergence-confinement method is discussed by comparing these curves with the field measurements. Three-dimensional finite element analyses are performed to gain a better understanding of stress and displacement behaviour near the tunnel face. An improved design method is proposed based on the review of existing design methods and the performance of numerical analyses. A specific method or combination of two different methods is suggested for the estimation of lining loads for different conditions of tunnelling. A method to determine the stress reduction factor is described. Typical values of dimensionless load factors nD/H for tunnels in Edmonton are obtained from parametric analyses. Finally, the loads calculated using the proposed method are compared with field measurements collected from various tunnels in terms of soil types and construction methods to verify the method. The proposed method gives a reasonable approximation of the lining loads. The proposed method is recommended as an approximate guideline for the design of tunnels, but the results should be confirmed by field measurements due to the uncertainties of the ground and lining properties and the construction procedures, This is the reason that in-situ monitoring should be an integral part of the design procedure.

  • PDF

Analysis on the creep response of bolted rock using bolted burgers model

  • Zhao, Tong-Bin;Zhang, Yu-Bao;Zhang, Qian-Qing;Tan, Yun-Liang
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • In this paper, the creep behavior of bolted rock was analyzed by using the unconfined creep tests and the numerical results. Based on the test results, the Bolted Burgers creep model (B-B model) was proposed to clarify the creep mechanism of rock mass due to rock bolts. As to the simulation of the creep behaviour of bolted rock, a new user-defined incremental iterative format of the B-B model was established and the open-source $FLAC^{3D}$ code was written by using the object-oriented language (C++). To check the reliability of the present B-B creep constitutive model program, a numerical model of a tunnel with buried depth of 1000 m was established to analyze the creep response of the tunnel with the B-B model support, the non-support and the bolt element support. The simulation results show that the present B-B model is consistent with the calculated results of the inherent bolt element in $FLAC^{3D}$, and the convergence deformation can be more effectively controlled when the proposed B-B model is used in the $FLAC^{3D}$ software. The big advantage of the present B-B creep model secondarily developed in the $FLAC^{3D}$ software is the high computational efficiency.

Investigation of Indicator Kriging for Evaluating Proper Rock Mass Classification based on Electrical Resistivity and RMR Correlation Analysis (RMR과 전기비저항의 상관성 해석에 기초하여 지시크리깅을 적용한 최적 암반 분류 기법 고찰)

  • Lee, Kyung-Ju;Ha, Hee-Sang;Ko, Kwang-Buem;Kim, Ji-Soo
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.407-420
    • /
    • 2009
  • In this study geostatistical technique using indicator kriging was performed to evaluate the optimal rock mass classification by integrating the various geophysical information such as borehole data and geophysical data. To get the optimal kriging result, it is necessary to devise the suitable technique to integrate the hard (borehole) and soft (geophysical) data effectively. Also, the model parameters of the variogram must be determined as a priori procedure. Iterative non-linear inversion method was implemented to determine the model parameters of theoretical variogram. To verify the algorithm, behaviour of object function and precision of convergence were investigated, revealing that gradient of the range is extremely small. This algorithm for the field data was applied to a mountainous area planned for a large-scale tunneling construction. As for a soft data, resistivity information from AMT survey is incorporated with RMR information from borehole data, a sort of hard data. Finally, RMR profiles were constructed and attempted to be interpreted at the tunnel elevation and the upper 1D level.