• Title/Summary/Keyword: Convergence angle control

Search Result 117, Processing Time 0.022 seconds

Upper Extremity Biomechanics of Manual Wheelchair Propulsion at Different Speeds (수동 휠체어 추진 속도에 따른 상지 관절 생체역학적 영향 분석)

  • Hwang, Seonhong
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.241-250
    • /
    • 2022
  • It is known that chronic pain and injury of upper limb joint tissue in manual wheelchair users is usually caused by muscle imbalance, and the propulsion speed is reported to increase this muscle imbalance. In this study, kinematic variables, electromyography, and ultrasonographic images of the upper limb were measured and analyzed at two different propulsion speeds to provide a quantitative basis for the risk of upper extremity joint injury. Eleven patients with spinal cord injury for the experimental group (GE) and 27 healthy adults for the control group (GC) participated in this study. Joint angles and electromyography were measured while subjects performed self-selected comfortable and fast-speed wheelchair propulsion. Ultrasound images were recorded before and after each propulsion task to measure the acromiohumeral distance (AHD). The range of motion of the shoulder (14.35 deg in GE; 20.24 deg in GC) and elbow (5.25 deg in GE; 2.57 deg in GC) joints were significantly decreased (p<0.001). Muscle activation levels of the anterior deltoid, posterior deltoid, biceps brachii, and triceps brachii increased at fast propulsion. Specifically, triceps brachii showed a significant increase in muscle activation at fast propulsion. AHD decreased at fast propulsion. Moreover, the AHD of GE was already narrowed by about 60% compared to the GC from the pre-tests. Increased load on wheelchair propulsion, such as fast propulsion, is considered to cause upper limb joint impingement and soft tissue injury due to overuse of the extensor muscles in a narrow joint space. It is expected that the results of this study can be a quantitative and objective basis for training and rehabilitation for manual wheelchair users to prevent joint pain and damage.

Performance Evaluation of KOMPSAT-3 Satellite DSM in Overseas Testbed Area (해외 테스트베드 지역 아리랑 위성 3호 DSM 성능평가)

  • Oh, Kwan-Young;Hwang, Jeong-In;Yoo, Woo-Sun;Lee, Kwang-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1615-1627
    • /
    • 2020
  • The purpose of this study is to compare and analyze the performance of KOMPSAT-3 Digital Surface Model (DSM) made in overseas testbed area. To that end, we collected the KOMPSAT-3 in-track stereo image taken in San Francisco, the U.S. The stereo geometry elements (B/H, converse angle, etc.) of the stereo image taken were all found to be in the stable range. By applying precise sensor modeling using Ground Control Point (GCP) and DSM automatic generation technique, DSM with 1 m resolution was produced. Reference materials for evaluation and calibration are ground points with accuracy within 0.01 m from Compass Data Inc., 1 m resolution Elevation 1-DSM produced by Airbus. The precision sensor modeling accuracy of KOMPSAT-3 was within 0.5 m (RMSE) in horizontal and vertical directions. When the difference map was written between the generated DSM and the reference DSM, the mean and standard deviation were 0.61 m and 5.25 m respectively, but in some areas, they showed a large difference of more than 100 m. These areas appeared mainly in closed areas where high-rise buildings were concentrated. If KOMPSAT-3 tri-stereo images are used and various post-processing techniques are developed, it will be possible to produce DSM with more improved quality.

A Study on the Establishment of Quality Control Standards for Accuracy Improvement of DSRC Traffic Information System (DSRC 교통정보 정확도 개선을 위한 품질관리 기준수립 연구)

  • Hwang, Taehyun;Won, Insu;Kwon, Jangwoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.1
    • /
    • pp.44-57
    • /
    • 2020
  • A dedicated short-range communications (DSRC) traffic information system is a detection system for a section of road using communication between roadside equipment and on-board High-Pass units to collect road traffic information and provide reliable traffic information to drivers. The Ministry of Land, Infrastructure, and Transport announced that a DSRC system must be supported to pass the performance evaluation of an intelligent transportation system (ITS), and the performance evaluation for DSRC systems installed in expressways and national highways is started. Currently, DSRC traffic information systems are only managed for maintenance and functional-monitoring purposes, which means that detailed criteria for the operation of a DSRC traffic information system, such as communication range, the direction of the antenna, and the power of the radio wave, etc., need to be established. In this paper, the criteria of the performance evaluation of a DSRC traffic information system are presented for different road types and road environments. The proposed performance evaluation criteria included the communication range and communication power of roadside equipment. In addition, installation criteria, such as the direction of the antenna, and the height and angle of the installed system, are presented for different road types and road environments. The criteria presented were evaluated for DSRC roadside equipment and documented to improve system maintenance and quality control of the communication system.

Estimation of Elastic Modulus of Jointed Rock Mass under Tunnel Excavation Loading (터널 굴착하중 조건에서의 절리암반의 탄성계수 예측)

  • Son, Moorak;Lee, Won-Ki;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.17-26
    • /
    • 2014
  • Tunneling-induced displacement in a jointed rock mass is an important factor to control tunnel stability and to secure a demanded space and construction quality. The magnitude of the inducible displacements is significantly affected by an elastic modulus and therefore, in a rock mass where a joint controls tunnel behavior, it is very important to estimate an elastic modulus of jointed rock mass reliably. Elastic modulus of jointed rock mass is affected by many factors such as rock type, joint condition, and loading condition. Nevertheless, most existing studies were focused on rough empirical relationships based on compressive loading conditions, which are different from tunnel excavation loading conditions, without a systematic approach of rock, joint, and loading conditions together. Therefore, this study considered rock and joint conditions systematically to estimate an elastic modulus of jointed rock mass under tunnel excavation loading. The controlled factors considered in this study are rock types and joint conditions (joint shear strength, joint inclination angle, number of joint sets, and joint spacing). Numerical parametric studies have been carried out with a consideration of different rock and joint conditions; the results have been compared with existing empirical relationships; and charts of elastic modulus change of different rock and joint conditions have been provided. The results are expected to have a great practical use for estimating the convergence induced by tunnel excavation in jointed rockmass.

Development of a CNN-based Cross Point Detection Algorithm for an Air Duct Cleaning Robot (CNN 기반 공조 덕트 청소 로봇의 교차점 검출 알고리듬 개발)

  • Yi, Sarang;Noh, Eunsol;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.1-8
    • /
    • 2020
  • Air ducts installed for ventilation inside buildings accumulate contaminants during their service life. Robots are installed to clean the air duct at low cost, but they are still not fully automated and depend on manpower. In this study, an intersection detection algorithm for autonomous driving was applied to an air duct cleaning robot. Autonomous driving of the robot was achieved by calculating the distance and angle between the extracted point and the center point through the intersection detection algorithm from the camera image mounted on the robot. The training data consisted of CAD images of the duct interior as well as the cross-point coordinates and angles between the two boundary lines. The deep learning-based CNN model was applied as a detection algorithm. For training, the cross-point coordinates were obtained from CAD images. The accuracy was determined based on the differences in the actual and predicted areas and distances. A cleaning robot prototype was designed, consisting of a frame, a Raspberry Pi computer, a control unit and a drive unit. The algorithm was validated by video imagery of the robot in operation. The algorithm can be applied to vehicles operating in similar environments.

A Study on Automatic Solar Tracking Design of Rooftop Solar Power Generation System and Linkage with Education Curriculum (지붕 설치형 태양광 발전 시스템의 태양 위치 추적 구조물 설계 및 설치 실증 기법의 교육과정 연계)

  • Woo, Deok Gun;Seo, Choon Won;Lee, Hyo-Jai
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.387-392
    • /
    • 2022
  • To participate in global carbon neutrality, the Korean government is also planning to carry out zero-energy building certification for all buildings by 2030 through the enforcement decree of the 'Green Building Support Act'. Accordingly, the government is providing various projects related to solar power generation, which are relatively close to life. In particular, roof-mounted photovoltaic power generation systems are attracting attention in terms of using unused space to produce energy without destroying the environment, but low power generation efficiency compared to other photovoltaic power generation facilities is pointed out as a disadvantage. Therefore, in this paper, to solve this problem, we propose an efficient solar panel angle variable system through research on the solar panel structure for single-axial solar tracking, and also consider the application environment of the roof-mounted solar power generation system. Suggests measures to prevent damage and secondary damage. In addition, it is judged that it is possible to control the solar panel based on ICT convergence and configure the accident prediction safety system to link the project-based education program.

Study on the Identification of Ship Maneuverability Required for Navigational Officers based on AHP Analysis (AHP 분석 기반 항해사 필요 선박조종성능 식별 연구)

  • Kang, Suk-Young;Ahn, Young-Joong;Yu, Yong-Ung;Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.800-808
    • /
    • 2022
  • The International Maritime Organization adopted the interim standards for ship maneuverability in November 1993 for preventing collision of ships at sea and for protecting the marine environment, and based on the accumulated data, in December 2002, the established standards for ship maneuverability were adopted. However, the standards adopted are those at full load, even keel, and at least 90 % of the ship speed at 85 % of the ship's maximum power. Moreover, these standards have limitations in providing information on maneuverability under actual navigational conditions. Therefore, in this study, frequency analysis AHP analysis techniques were studied by consulting navigational officers, captains, and experts, who have significant knowledge on ship maneuverability, utilization of the current standards, and the information necessary for the operation of the actual ship. The results of this study confirmed that the necessary information on maneuverability for the navigational officer operating the vessel is information about the turning circle at a small angle of 5°-10° and z-test information at maneuvering speed, not sea speed. Additionally, in relation to speed control, additional information on deceleration inertia and acceleration inertia is needed than the information on the stopping ability at sea speed and full loaded condition. The derived results are considered to be useful as basic data for preparing guidelines for ship maneuverability necessary for navigational of icers who operate ships.