• Title/Summary/Keyword: Convergence angle control

Search Result 117, Processing Time 0.024 seconds

Optimization of field Application Conditions of the Multistage Convergent Photographing Technique for the Measurement of Joint Orientation on Rock Slope (암반사면 절리의 방향성 측정을 위한 수렴다중촬영기법의 현장 적용성 연구)

  • Kim, Jong-Hoon;Kim, Jae-Dong
    • Tunnel and Underground Space
    • /
    • v.19 no.1
    • /
    • pp.31-42
    • /
    • 2009
  • One set of hardware system of guide point method (GP method), modified from the multistage convergent photographing technique, was developed to interpret the geometrical characteristics of Joints photogrammetrically on rock slope. Before the field application of the hardware system, the level of errors and constraints that ran be acceptable in the field measurement has been severely investigated in the laboratory and the optimum photographing scheme was analyzed. The range of the most suitable convergence angle between two cameras was $25^{\circ}{\sim}150^{\circ}$ and the photographing distance was about 5.5 m when using a 2 M pixel digital camera. An extended analyzing technique, which was newly developed in this study, was applied to the field measurement to magnify the benefits of GP method. This technique can be applied when survey for the wide range of rock surface is necessary. The global coordinates of ground control points for the neighbor photographing area ran be introduced without any preparation from the previous photographed area using this technique. It could reduce phographing time in the field.

ANALYSIS AND OPTIMIZATION of INJECTION TIMING for AN ADVANCED COMPRESSED AIR ENGINE KIT

  • Kumar, Akshay;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.54-63
    • /
    • 2015
  • Increasing air pollution levels and the global oil crisis has become a major hindrance in the growth of our automobile sector. Traditional Internal Combustion engines running on non-renewable fuels are proving to be the major culprit for the harmful effects on environment. With few modifications and also with assistance of few additional components current small SI engines can be modified into a pneumatic engine (commonly known as Compressed Air Engines) without much technical complications where the working fluid is compressed air. The working principle is very basic as adiabatic expansion of the compressed air takes place inside the cylinder pushing the piston downwards creating enough MEP to run the crank shaft at decent RPM. With the assistance of new research and development on pneumatic engines can explore the potential of pneumatic engines as a viable option over IC engines. The paper deals with analysis on RPM variation with corresponding compressed air injection at different crank angles from TDC keeping constant injection time period. Similarly RPM variation can also be observed at different injection pressures with similar injection angle variation. A setup employing a combination of magnetic switch (reed switch), magnets and solenoid valve is used in order to injection timing control. A conclusive data is obtained after detailed analysis of RPM variation that can be employed in newly modified pneumatic engines in order to enhance the running performance. With a number of benefits offered by pneumatic engine over IC engines such as no emissions, better efficiency, low running cost, light weight accompanied by optimized injection conditions can cause a significant development in pneumatic engines without any major alteration.

The Method for Estimating Stereoscopic Object Position with Horizontal-Moving Camera (수평이동방식 입체카메라의 입체영상의 결상 위치 추정 방법)

  • Lim, Young-Tae;Kim, Nam;Kwon, Ki-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.532-536
    • /
    • 2006
  • The position of stereoscopic objects is an important parameter to induce three-dimensional effects such as convergence control and image distortions. There are three kinds of stereoscopic cameras : Parallel, Toed-in, and Horizontal-Moving cameras. In this paper we proposed the method for estimating stereoscopic object position with a horizontal-moving camera. In the previous methods, viewing angle ratios are used to estimate the object positions. Our method based on the horizontal movements of the camera to estimate the positions. Using geometrical models of shooting and display we experimented with two methods. Results of experiments showed the distance of stereoscopic objects on virtual screen related to horizontal movement.

Vision and Depth Information based Real-time Hand Interface Method Using Finger Joint Estimation (손가락 마디 추정을 이용한 비전 및 깊이 정보 기반 손 인터페이스 방법)

  • Park, Kiseo;Lee, Daeho;Park, Youngtae
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.157-163
    • /
    • 2013
  • In this paper, we propose a vision and depth information based real-time hand gesture interface method using finger joint estimation. For this, the areas of left and right hands are segmented after mapping of the visual image and depth information image, and labeling and boundary noise removal is performed. Then, the centroid point and rotation angle of each hand area are calculated. Afterwards, a circle is expanded at following pattern from a centroid point of the hand to detect joint points and end points of the finger by obtaining the midway points of the hand boundary crossing and the hand model is recognized. Experimental results that our method enabled fingertip distinction and recognized various hand gestures fast and accurately. As a result of the experiment on various hand poses with the hidden fingers using both hands, the accuracy showed over 90% and the performance indicated over 25 fps. The proposed method can be used as a without contacts input interface in HCI control, education, and game applications.

Fire Extinguisher Maintenance System using Smart NFC Communication and Real-Time Pressure Measurement (스마트 NFC 통신과 실시간 압력 측정을 이용한 소화기 유지관리 시스템)

  • Park, Byeng-Cheol;Park, Ki-Hong
    • Journal of Digital Contents Society
    • /
    • v.18 no.2
    • /
    • pp.403-410
    • /
    • 2017
  • In this paper, the fire extinguisher maintenance system using smart NFC communication and the real-time pressure measurement is proposed. The proposed system consists of three steps in the flow of information. The first step is to identify the fire extinguisher through NFC tagging in the fire extinguisher module using the smart device. The fire extinguisher appearance check and the real-time pressure measurement is performed in the second step, and the last step sends the check status information to the management server. In particular, the actual pressure value is calculated based on the angle of the green area and the indicating needle. Some experiments are conducted so as to verify the proposed system, and as a result, the proposed system shows that the administrator can effectively control the status information of fire safety check.

A comparative analysis of the kinematical characteristics of Forehand & Backhand Flying Disc Throwing (플라잉디스크 포핸드 및 백핸드 던지기 동작의 운동학적 특성 비교)

  • Kim, Mee-Hyang;Park, Jong-Chul;Byun, Kyung-Seok
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.555-563
    • /
    • 2019
  • This study was to provide quantitative basic data on the forehand and backhand throw movements of flying disks. For this purpose, the kinematic variables were calculated using the three-dimensional motion analysis system. A comprehensive analysis of the study variables showed that it is important to throw flying disks accurately as well as far away, so in P2 and P3 it is necessary to control forward movement and concentrate on the rotation of the joints. In addition, rotational force transfer from pelvis to body is considered important for efficient rotational movement. The forehand was found to mainly utilize the movement of the upper extremity joint to perform throwing motion, while the backhand throw was found to be relatively utilized for the rotation of the torso and pelvis. Based on the quantitative data of this study, we hope that it can be used as a basic material for on-site training of Flying Discs.

Development of distance sensor module with object tracking function using radial arrangement of phototransistor for educational robot (교육용 로봇을 위한 포토트랜지스터의 방사형 배열을 이용한 물체추적기능을 갖는 거리 센서 모듈 개발)

  • Cho, Se-Hyoung
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.922-932
    • /
    • 2018
  • Radial distance sensors are widely used for surveying and autonomous navigation. It is necessary to train the operation principle of these sensors and how to apply them. Although commercialization of radial distance sensor continues to be cost-effective through lower performance, but it is still expensive for educational purposes. In this paper, we propose a distance sensor module with object tracking using radial array of low cost phototransistor which can be used for educational robot. The proposed method is able to detect the position of a fast moving object immediately by arranging the phototransistor in the range of 180 degrees and improve the sensing angle range and track the object by the sensor rotation using the servo motor. The scan speed of the proposed sensor is 50~200 times faster than the commercial distance sensor, thus it can be applied to a high performance educational mobile robot with 1ms control loop.

Roundabout Design and Intervehicle Distance Measure for V2X-based Autonomous Driving (V2X 기반 자율운전을 위한 회전교차로 설계 및 차간 거리 측정)

  • Hwang, Jae-Jeong;Oh, Seok-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.83-89
    • /
    • 2021
  • To improve the performance of self-driving cars, the introduction of V2X, a communication technology that connects vehicles, infrastructure, and vehicles, is essential. Even if traffic information of the other vehicle is known, the structure of the intersection and a distance calculation algorithm are required for accurate calculations at roundabouts. This paper proposes a design algorithm for a rotating intersection and implemented in Matlab that complies with the national design rules and enables accurate calculations. Assuming the roundabout and the entrance/exit path to be a circle, a method for measuring the distance between vehicles at an arbitrary point was proposed using the horizontal shift of the entrance circle to the main circle. The algorithm could be used in fully autonomous vehicles by designing a roundabout suitable for the terrain by arbitrarily varying the angle between branches and the radius of curvature of the entrance and exit roads, and transmitting a warning signal when a collision between two driving vehicles is expected.

Effect of Turning Characteristics of Maritime Autonomous Surface Ships on Collision Avoidance (자율운항선박의 선회특성이 충돌회피에 미치는 영향)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.298-305
    • /
    • 2021
  • Identifying the effect of turning characteristics on collision avoidance for Maritime Autonomous Surface Ships (MASS) can provide a key to avoid the collision of MASS. The purpose of this study was to derive a method to identify the effect of turning characteristics, which can be changed by various rudder angles and the ship's speed, on collision avoidance. The turning circle was observed using a mathematical model of a 161-meter-long ship, and it was analyzed that the turning circle had an effect on collision avoidance through numerical simulations of collision avoidance for four collision situations of two ships. The evaluation results using the two variables, the minimum relative distance between two ships and the minimum time at the minimum relative distance, demonstrated that the rudder angle has a major influence on the change of the minimum relative distance, and the ship's speed has a major influence on the change of the minimum time. The evaluation method proposed in this study was expected to be applicable to collision avoidance as a measures in remote control of MASS.

Research on reinforcement mechanism of soft coal pillar anchor cable

  • Li, Ang;Ji, Bingnan;Zhou, Haifeng;Wang, Feng;Liu, Yingjie;Mu, Pengfei;Yang, Jian;Xu, Ganggang;Zhao, Chunhu
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.697-706
    • /
    • 2022
  • In order to explore the stable anchoring conditions of coal side under the mining disturbance of soft section coal pillar in Wangcun Coal Mine of Chenghe Mining Area, the distribution model of the anchoring support pressure at the coal pillar side was established, using the strain-softening characteristics of the coal to study the distribution law of anchoring coal side support pressure. The analytical solution for the reinforcement anchorage stress in the coal pillar side was derived with the inelastic state mechanical model. The results show that the deformation angle of the roadway side and roof increases with the roof subsidence due to the mining influence at the adjacent working face, the plastic deformation zone extends to the depth of the coal side, and the increase of anchorage stress can effectively control the roof subsidence and further deterioration of plastic zone. The roadway height and the peak support pressure have a certain influence on the anchorage stress, the required anchorage stress of the coal side rises with the roadway height and the peak support pressure. The required anchorage stress of the coal pillar side decreases as the cohesion between the coal seam and the roof and floor and the anchor length increases. Then, applied the research result to Wangcun coal mine in Chenghe mining area, the design of anchor cable reinforcement support was proposed for the section of coal pillars side that has been anchored and deformed, which achieved great results and effectively controlled the convergence and deformation of the side, providing a safety guarantee for the roadway excavation and mining.