• Title/Summary/Keyword: Convergence and Integration technologies

Search Result 87, Processing Time 0.024 seconds

Circuit Components Based on New Materials: The Reality of Multitechnology System on Systems Hyperintegration

  • Eshraghian, Kamran;Cho, Kyoung-Rok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.106-111
    • /
    • 2010
  • The convergence of significantly different and disparate technologies such as spintronics, carbon nano tube field effect transistors, photon and bio-responsive molecular switches, memristor and memristive systems and metamaterials, coupled with energy scavenging sources are gaining a renewed focus in the quest for new products. This paper will provide an insight into an anticipated technological revolution and will highlight a futuristic Roadmap to capture opportunities that are brought about as the results of formulation of new circuit components basically driven by emergence of nanoscale materials as part of System on System integration. Challenges as the result of new lumped components such as memristor, metamaterial-based lumped components and the like that will challenge the designers' comfort zone will also be discussed.

Game Theory-Based Scheme for Optimizing Energy and Latency in LEO Satellite-Multi-access Edge Computing

  • Ducsun Lim;Dongkyun Lim
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.7-15
    • /
    • 2024
  • 6G network technology represents the next generation of communications, supporting high-speed connectivity, ultra-low latency, and integration with cutting-edge technologies, such as the Internet of Things (IoT), virtual reality, and autonomous vehicles. These advancements promise to drive transformative changes in digital society. However, as technology progresses, the demand for efficient data transmission and energy management between smart devices and network equipment also intensifies. A significant challenge within 6G networks is the optimization of interactions between satellites and smart devices. This study addresses this issue by introducing a new game theory-based technique aimed at minimizing system-wide energy consumption and latency. The proposed technique reduces the processing load on smart devices and optimizes the offloading decision ratio to effectively utilize the resources of Low-Earth Orbit (LEO) satellites. Simulation results demonstrate that the proposed technique achieves a 30% reduction in energy consumption and a 40% improvement in latency compared to existing methods, thereby significantly enhancing performance.

Distributed Design System as a New Paradigm Towards Future Collaborative Architectural Design Process

  • Han, Seung Hoon
    • Architectural research
    • /
    • v.7 no.2
    • /
    • pp.23-33
    • /
    • 2005
  • The use of computers in architectural professions has grown with the power of easy data management, increased sophistication of standalone applications, inexpensive hardware, improved speed of processing, use of standard library and tools for communication and collaboration. Recently, there has been a growing interest in distributed CAAD (Computer-Aided Architectural Design) integration due to the needs of direct collaboration among project participants in different locations, and Internet is becoming the optimal tool for collaboration among participants in architectural design and construction projects. The aim of this research is to provide a new paradigm for a CAAD system by combining research on integrated CAAD applications with recent collaboration technologies. To accomplish this research objective, interactive three-dimensional (3D) design tools and applications running on the Web have been developed for an Internet-based distributed CAAD application system, specifically designed to meet the requirements of the architectural design process. To this end, two different scopes of implementation are evaluated: first, global architecture and the functionality of a distributed CAAD system; and, second, the association of an architectural application to the system.

Integrating Blockchain and Digital Twin for Smart Warehouse Supply Chain Management (스마트 웨어하우스 공급망 관리를 위한 블록체인과 Digital Twin의 통합)

  • Keo Ratanak;Muhammad Firdaus;Kyung-hyune Rhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.273-276
    • /
    • 2023
  • This paper presents the integration of Digital twin and Blockchain-based Supply Chain Management (DB-SCM) in a smart warehouse to create a more efficient, secure, and transparent facility. The process involves creating a digital twin of the warehouse using sensors and IoT devices and then integrating it with a blockchain-based supply chain management system to connect all stakeholders. All data are collected and tracked in real-time as goods move through the warehouse, and smart contracts are automatically executed to ensure accountability for all parties involved. The study also highlights the critical role of effective supply chain management in modern business operations and the significance of smart warehouses, which leverage advanced technologies such as robotics, AI, and data analytics to optimize warehouse operations. Later, we discuss the importance of digital twins, which allow for creating a virtual representation of a physical object or system, and their potential to revolutionize a wide range of industries. Therefore, DB-SCM offers numerous benefits, including enhanced efficiency, improved customer satisfaction, and increased sustainability, and provides a valuable case study for organizations seeking to optimize their supply chain operations.

Study on the UUV Operation via Conventional Submarine's Torpedo Tube (재래식 잠수함 어뢰발사관을 활용한 UUV 운용기법에 대한 연구)

  • Li, Ji-Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • Due to its unmanned feature and some of being matured underwater technologies, UUV(Unmanned Undersea Vehicle) is increasingly considered as a utility player in today's battle-field. The operational benefit of submarine-based UUV operation could be enormous yet the integration challenges are significant, particularly for most of small conventionally-powered submarines. In this paper, we consider UUV operational methodology via the conventional submarine's torpedo tube. Two previous attempts having been done to retrieve the UUV through torpedo tube are reviewed, and their pros and cons are also analyzed. Then, an alternative option is proposed for UUV operation via torpedo tube. In addition, some of practical challenges are also discussed in the paper.

Reliability Assessment Criteria of Sensor Module for Lighting Fixtures (조명용센서모듈의 신뢰성평가기준)

  • Jeong, Hee-Suk;Park, Chang-Kyu;Jeong, Hai-Sung;Baik, Jai-Wook
    • Journal of Applied Reliability
    • /
    • v.10 no.1
    • /
    • pp.11-24
    • /
    • 2010
  • Lighting industry is rapidly being developed as the ubiquitous society based on sensor network emerges. This kind of paradigm shift brings the society convergence of technologies which leads to smart lighting system as well as the integration of interior and sensibility control. However, standards for sensors have not been firmly established, and problems related to quality and malfunction have been brought up, thereby calling for careful approach to the enhancement and assessment of reliability of the item. In this article reliability assessment criteria for sensor module for lighting fixtures is established in terms of performance assessment criterion and reliability assessment criterion.

Topic Modeling on Patent and Article Big Data Using BERTopic and Analyzing Technological Trends of AI Semiconductor Industry (BERTopic을 활용한 텍스트마이닝 기반 인공지능 반도체 기술 및 연구동향 분석)

  • Hyeonkyeong Kim;Junghoon Lee;Sunku Kang
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.1
    • /
    • pp.139-161
    • /
    • 2024
  • The Fourth Industrial Revolution has spurred widespread adoption of AI-based services, driving global interest in AI semiconductors for efficient large-scale computation. Text mining research, historically using LDA, has evolved with machine learning integration, exemplified by the 2021 BERTopic technology. This study employs BERTopic to analyze AI semiconductor-related patents and research data, generating 48 topics from 2,256 patents and 40 topics from 1,112 publications. While providing valuable insights into technology trends, the study acknowledges limitations in taking a macro approach to the entire AI semiconductor industry. Future research may explore specific technologies for more nuanced insights as the industry matures.

A Study on Development and Application of Real Time Vision Algorithm for Inspection Process Automation (검사공정 자동화를 위한 실시간 비전알고리즘 개발 및 응용에 관한 연구)

  • Back, Seung-Hak;Hwang, Won-Jun;Shin, Haeng-Bong;Choi, Young-Sik;Park, Dae-Yeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.42-49
    • /
    • 2016
  • This study proposes a non-contact inspective technology based robot vision system for Faulty Inspection of welding States and Parts Shape. The maine focus is real time implementation of the machining parts' automatic inspection by the robotic moving. For this purpose, the automatic test instrument inspects the precision components designator the vision system. pattern Recognition Technologies and Precision Components for vision inspection technology and precision machining of precision parts including the status and appearance distinguish between good and bad. To perform a realization of a real-time automation integration system for the precision parts of manufacturing process, it is designed a robot vision system for the integrated system controller and verified the reliability through experiments. The main contents of this paper, the robot vision technology for noncontact inspection of precision components and machinery parts is useful technology for FA.

A Tight Upper Bound on Capacity of Intelligent Reflecting Surface Transmissions Towards 6G Networks

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.205-210
    • /
    • 2022
  • To achieve the higher network capacity and mass connectivity in the forthcoming mobile network, revolutionary technologies have been considered. Recently, an upper bound on capacity of intelligent reflecting surface (IRS) transmissions towards the sixth generation (6G) mobile systems has been proposed. In this paper, we consider a tighter upper bound on capacity of IRS transmissions than the existing upper bound. First, using integration by parts, we derive an upper bound on capacity of IRS transmissions under Rician fading channels and a Rayleigh fading channel. Then, we show numerically that the proposed upper bound is closer to Monte Carlo simulations than the existing upper bound. Furthermore, we also demonstrate that the bounding error of the proposed upper bound is much smaller than that of the existing upper bound, and the superiority of the proposed upper bound over the existing upper bound becomes more significant as the signal-to-noise ratio (SNR) increases.

Reference Model for the Service of Smart City Platform through Case Study (사례 연구를 통한 스마트 시티 플랫폼의 서비스를 위한 참조 모델)

  • Kim, Young Soo;Mun, Hyung-Jin
    • Journal of Digital Convergence
    • /
    • v.19 no.8
    • /
    • pp.241-247
    • /
    • 2021
  • As a way to solve the side effects of urban development, a smart city with information and communication technology converges in the city is being built. For this, a smart city platform should support the development and integration of smart city services. Therefore, the underlying technology and the functional and non-functional requirements that the smart platform must support were analyzed. As a result of this, we classified the Internet of Things, cloud computing, big data and cyber-physical systems into four categories as the underlying technologies supported by the smart city platform, and derived the functional and non-functional requirements that can be implemented and the reference model of the smart city platform. The reference model of the smart city platform is used for decision-making on investment in infrastructure technology and the development scope of services according to functional or non-functional requirements to solve specific city problems for city managers. It provides platform developers with guidelines to identify and determine the functional and non-functional requirements and implementation technologies of software platforms for building smart cities.