
ARCHITECTURAL RESEARCH, Vol. 7, NO. 2 (2005), pp. 23-33

Distributed Design System as a New Paradigm
Towards Future Collaborative Architectural Design Process

Seung Hoon Han
Convergence Laboratory, KT, Seoul, Korea

Abstract

The use of computers in architectural professions has grown with the power of easy data management, increased sophistication of stand-
alone applications, inexpensive hardware, improved speed of processing, use of standard library and tools for communication and
collaboration. Recently, there has been a growing interest in distributed CAAD (Computer-Aided Architectural Design) integration due to the
needs of direct collaboration among project participants in different locations, and Internet is becoming the optimal tool for collaboration among
participants in architectural design and construction projects. The aim of this research is to provide a new paradigm for a CAAD system by
combining research on integrated CAAD applications with recent collaboration technologies. To accomplish this research objective, interactive
three-dimensional (3D) design tools and applications running on the Web have been developed for an Internet-based distributed CAAD
application system, specifically designed to meet the requirements of the architectural design process. To this end, two different scopes of
implementation are evaluated: first, global architecture and the functionality of a distributed CAAD system; and, second, the association of an
architectural application to the system.

Keywords: Distributed Design System, Collaborative Design, Design Process, Distributed Collaboration, Internet

1. INTRODUCTION

Until recently, the use of computers in the profession of
architecture has grown with the power of easy data
management, updates, use of standard library and tools for
communication and collaboration. The computing
resources of an organization or project team are spread
across many different platforms in different locations. This
state of affairs is creating a growing interest in distributed
CAAD integration due to the needs of direct collaboration
among project participants in different locations. The
potential for the integration of information is expected to
have a tremendous impact on architecture and on the
construction industry.

Internet is becoming the optimal tool for collaboration
among participants in architectural design and construction
projects because of the low connection costs and wide
availability. Such collaborations will include the exchange
of project drawings and various forms of project materials
and general distribution of project information through the
Internet. One way or another, the existence of the Internet
and the wealth of related technology will change the way
architectural design and construction are practiced today.

Distributed object computing has the potential to change
the information landscape of a broad range of business
practices. As integrated computer systems offer the
capability to improve the effectiveness and efficiency of
management processes in practice, their use is likely to
increase the information flow and the quality of
communication among project participants in the
collaborative design process.

A typical large-scale architectural project, normally,
involves participants in various disciplines, generating
large volumes of data and decisions. Centralizing such
large amounts of data in a single database poses technical

difficulties. Distribution technology, however, can solve
these problems by accomplishing the concept of network
transparency, for example; data physically stored in many
different locations can be seen as a single data repository.

This research will investigate how architects can make a
successful collaboration using distributed technology,
especially in the early design stages which mainly involve
their cognitive work, and aims to gain insight into the
advantages and shortcomings of such an approach.
Through this paper, the architecture of a distributed
collaborative architectural design system is investigated
and some experiments that examine design workflow tasks
performed within the environment are presented.

2. KEY CHARACTERISTICS OF DISTRIBUTED
DESIGN SYSTEM

Distributed-object technology is considered to be the
most flexible server-client system available. It
encapsulates data and task logic in objects designed to run
anywhere on networks, and to run on different platforms.
These objects talk to existing applications by way of object
wrappers, and manage themselves and their resources.
Accordingly, distributed objects supply a paradigm for
building universal, transparent and adaptive information
infrastructure systems. This new computing paradigm,
distributed object computing, is a blending of the cognitive
and semantic integrity of objects with the distribution
architecture of client/server technologies.

As distributed CAAD environments are a special case of
distributed systems, it is reasonable to exploit features and
services of general architectures for distributed systems.
This section examines concepts and recent issues related to
distributed computing as an evolutionary paradigm of the
client/server system, analyzes available network-based

24 Seung Hoon Han

collaboration solutions, and proposes a process model of a
CAAD-integrated distributed design system for future
industries.

Figure 1. Three Waves of Client/Server Computing
(Source: http://www.byte.com/art/9504/img/412017c2.htm)

In the above figure, “Three Waves of Client/Server
Computing,” the Ethernet era of client/server shows a file-
centered application wave followed by a database-centered
wave. As projected in the graph, distributed objects are the
next big wave (Orfali et al., 1997).

One of strengths of distributed-object technology is that
it can comprise other forms of client/server computing,
including SQL databases, and groupware. Also, these
distributed objects can help break large monolithic
applications into more manageable components that
coexist on the intergalactic network. In addition, existing
systems can be “wrapped” and appear to the developer to
be objects. Once wrapped, the legacy code can participate
in a distributed object environment. Wrapping is a
technique of creating an Object-Oriented (OO) interface
that can access specific functionality contained in one or
more existing computer applications. Technologically, this
object interaction is accomplished through a sophisticated
messaging system that allows objects to request services of
other objects regardless of the machines on which they
physically reside (Orfali et al., 1997).

The efforts to reduce cognitive complexity are evident
in many areas of the computer industry. Object-Oriented
Programming (OOP) and methodology are modeled after
real world objects to reduce the cognitive burden. With
familiar concepts in life and real, object-like classifications,
programmers now have more space for their intuitive
thinking, while having more freedom to program
complexity. In this manner, OO methods were applied to
the design of better programming languages as an interface
between the human programmer and machine code.

The design features for object systems are inheritance,
encapsulation, and polymorphism. These three characteris-
tics of objects provide the central design benefit of object
reusability. Another factor in reusability is a communica-
tions model using a message-based architecture. Messag-
ing is a communications paradigm - send and continue
work until notified - which allows for an object to be
available for further requests and activities instead of wait-
ing for a server to return a result. With asynchronous mes-

saging, the client can be notified when the results are ready
instead of waiting for data. This benefit of asynchronous
messaging is evident in a large network with many objects.

Most of the descriptions of operations (behavior) and
data (attributes) of an OO model reside within the objects
themselves. Here, the only way to use or manipulate an
object is to send it a message. The hiding of internal
information within objects is called encapsulation. To use
an object, the programmer needs only to be aware of what
operations it offers and which messages the object
responds to. The advantage of encapsulation is that the
implementation of objects can change or be extended
while keeping the way the object is used by the rest of the
system. The result is that changes tend to be local to an
object and maintenance is simplified. Furthermore, as OO
information systems are implemented and additional
reusable objects become available, programming becomes
more a matter of assembly rather than coding.

In an information system, many objects have similar
characteristics such as information structure and behavior,
in other words, procedures and methods. The concept of
classes means order to the world of objects. Classes are
templates used to define the data and methods of similar
types of objects. An object created from a class is referred
to as an instance, distinguishing the object from the mold
from which it was created (the class). Some objects of the
same general type may need specific characteristics added
to the type. A mechanism, called inheritance, is provided to
address specialization. As the name implies, inheritance is
a feature that allows one class of objects to acquire some
or all of its information structure and behavior from
another class, rather than force the developer to define the
structure or behavior over again. Hence, inheritance is a
useful mechanism for reuse of objects.

Polymorphism is a Greek term meaning “many forms.”
When applied to objects, polymorphism allows the
developer to use one name for similar kinds of operations
or functions. Rather than create unique names such as
drawCircle, drawRectangle or drawSquare, a single
method named draw may be used. The mechanism of the
distinguishing classes, depending on the kind of object
sending a message, launches the appropriate method such
as draw a square. Polymorphism can eliminate the need for
complex IF, ELSE and CASE structures and can enhance
the use of inheritance concepts. Developers need not be
concerned with the details of how other objects select their
operations as objects have polymorphism mechanism
inside (Fingar and Stikeleather, 1996).

With the impact of Information Technology, business
and product cycle times are decreasing while the speed of
business change is increasing. Management tries to
streamline operations, reduce overhead and squeeze more
out of production and sales channels in order to maximize
shrinking margins.

Business applications of the future will need to be
spread across multiple specialized platforms and will
cooperate with other applications. To meet the demands of
business, firms are investigating information systems

Distributed Design System as a New Paradigm Towards Future Collaborative Architectural Design Process 25

based upon distributed object computing technologies and
paradigms (Fingar and Stikeleather, 1996).

Business processes are essentially human phenomena.
Real business modeling requires that we model the way
work is actually accomplished, the ways things are.
Business modeling captures the real business entities and
operations, then translates them into object models. Object
orientation was developed in the 1960s to provide the
capability to build models that reflect real systems.

In this OO method, objects interact by passing messages
to each other. These messages represent requests for
information or services. The physical glue that ties the
distributed objects together is an Object Request Broker
(ORB). The ORB provides the means for objects to locate
and activate other objects on a network, regardless of the
processor or programming language used to develop them
on either client or server side. Thus, the ORB is the
middleware of distributed object computing that allows
interoperability in heterogeneous networks of objects.
ORBs were designed to provide a means for locating,
activating and communicating with objects while hiding
their implementation details from the developer (Pohl and
Myers, 1994).

In a distributed object environment, an application
supports a business process or task by combining
necessary business objects. This component assembly is a
major method for developing distributed object
applications, which acts like an application located in a
single place. In this environment, objects interact through a
messaging system that allows them to request functions of
other objects regardless of their physical locations.

The hiding of implementation details within objects is
one of the key features of OO technology that allows the
management of complexity in distributed computing. In a
distributed object environment, the application developer
does not need to consider what machine or programming
language was used to implement the server objects. The
user’s view of an application consists of distributed objects
that may be written in a wide scope of programming lan-
guages and platforms. For example, one program written
in C++ and running on one machine, a Java program
running on a mainframe, a Smalltalk object running inside
one user’s workstation, and an Excel spreadsheet running
on a microcomputer may all be composed in a single
application (Fingar and Stikeleather, 1996).

The objects appear to the user and developer as familiar
business objects, not machines, networks and program-
ming languages. Users and developers can think of those
objects only in terms of familiar business objects, not in
terms of the technology.

Distributed object computing is an extension of cli-
ent/server technology. However, there is a difference in its
working process and its implementation. With client/server,
there is generally an application running on a client com-
puter while another application runs on a server computer.
These two applications communicate across a network and
relay data to one another, usually via some middleware
provided in the form of an Application Program Interface

(API) or library function call.
A distributed application is made up of objects, just as

any other OO application. However, the objects of a
distributed object application are spread over and run on
multiple computers throughout a network. In a sense,
client/server is a narrow scope version of distributed object
computing (Sariyildiz and Schwenck, 1996).

With this technology, objects can be distributed on dif-
ferent computers throughout a network, living within their
own library outside of an application, and yet appearing as
if they were local within the application. Several technical
advantages result from a distributed object environment.

All communication between distributed objects occurs
in the form of messages, just as local objects within an
application communicate, rather than applying network
interfaces to each existing system.

Since all objects - both local and remote - communicate
in the same fashion via messages, programmers have the
ability to distribute components of an application to
computers that best fit the task of each object. For example,
an object that performs intense computations, such as
three-dimensional renderings, might be placed on a more
powerful computer, rather than on an average desktop
computer, where the user interacts with the presentation
objects of the rendered images. This advantage can
optimize hardware investments of an enterprise.

Software and hardware resources available on different
platforms can be tied together into a single application. In
this way, a single system image is achieved even when
applications are assembled from distributed objects
(Khemlani et al., 1998).

Two major standards for distributed objects are
Microsoft’s Object Linking and Embedding (OLE) and the
Object Management Group’s Common Object Request
Broker Architecture (CORBA). In comparison with OLE,
CORBA has more features for projects aimed at computer-
integrated collaboration; it supports the principles of
object-orientation in network computing whereas OLE
does not.

The CORBA will be used as an advanced OO object
connection provider in terms of system architecture
concept and technology. As an integration technology, not
a programming technology basically, CORBA will operate
as the glue that binds different programming and systems
together. Conceptually, it occupies the spaces between
C++, Java and a DBMS (Database Management System)
environment as a connection rather than a discrete
component by itself. The expected power of distributed
object computing will enhance the proposed system’s
performance with its unified system integrity.

The distributed object approach to integration has bene-
fits when we consider the current technological and eco-
nomic state of architectural collaboration. Instead of inte-
gration being achieved through static models that define
the structure of shared information in the form of files or
databases, the collaboration models can be distributed
through a network to be easily accessed and modified from
multiple users in different locations. This approach might,

26 Seung Hoon Han

Core Model

Abstract Model

Expert System

DBMS

CORBA IDL

VRML
w/ Java

Java
Client

CAAD
Model

SQL

in particular, promote the use of computers on-site.
Smaller, component-based applications are also easier to
distribute over networks, particularly with the interpreted
platform independent languages such as Java and C++
(Park 2001).

* IDL: Interface Definition Language

Figure 2. An Example for CORBA Connectivity

3. PROPOSED SYSTEM ARCHITECTURE

The building design process has changed significantly in
the last years. Generally, it is a matter of fact that the tech-
nological developments in every field of science have an
influence on the society and therefore on the design and
the design process itself. Architectural specialists are con-
sidering especially for the influence of the rapid develop-
ments of ICT (Information and Communication Technol-
ogy) in architectural design (Sariyildiz et al., 1997).

The Internet has evolved as an excellent resource for the
AEC (Architecture, Engineering, and Construction) disci-
plines, as it allows quick, efficient, and widespread com-
munication to those who can access it, sharing everything
from design information to project participant communica-
tion. Companies who previously marketed and sold CAAD
products are now diversifying and offering services and
other resources related to all aspects of the design industry.

Just as the earliest CAAD applications were relatively
unsophisticated in their capabilities of making the drafting
process of designers easier, these online services are cur-
rently in an early, formative period. The CAAD and AEC
industries are relatively beginner on the Internet and so
such services have strong as well as weak points. Already
established CAAD companies enhanced the features of
their offerings with innovation coupled with know-how,
while newly joined enterprises to the industry realize of
the needs of the industry viewed from new perspectives.
Considering the consummate growth and widespread utili-
zation by the AEC industry, the Internet and these Web-

based services will be the greatest area of growth and
development in the CAAD industry (Park, 2001).

Another new strategy for collaboration is proposed to
empower designers in the architectural field with an inno-
vative process, which comes from the utilization of dis-
tributed computing based on the OO approach. OO design
applied to CAAD development lends favorably to the ex-
pected nature of distributed objects, which can considera-
bly cut down decision-making procedures by providing
cooperation between them; developments in CAAD tech-
nology has led to modular objects and eventually to their
distribution. Distributed technology allows the designer to
extract valuable information associated with the objects
distributed online, not only values such as simple dimen-
sions, but also other user-defined values from which rea-
sonable updates and modification can be made.

Web services are appearing that cater to the AEC
industry’s need to collaborate efficiently and methods of
implementing Web-enabled collaboration are arising.
Recent peer-to-peer, distributed approaches are becoming
a major trend of collaboration, although they have not been
commercialized in the architectural profession yet. This
approach provides a basis for all work to be done,
concerning everything from project information to
application without having to worry about obsolete or non-
common hardware, software or unneeded personnel.

The current Web related programming technology,
including Virtual Reality Modeling Language (VRML),
ColdFusion, Java and Java Database Connectivity (JDBC),
makes it now possible to implement a successful 3D
information presentation system, which can be tested as a
prototype model on the Web. With the understanding of
architectural tasks and the specific nature of architectural
data and communication, a 3D interface using VRML and
Java can be designed to meet architectural design demands.

Concepts and tools such as Human-Computer Interac-
tion (HCI), Data Exchange Standards, OOP and Web tech-
nology have all emerged from work on conceptual data
models and network computing, and are apt to foster the
development of a new paradigm that will enable research-
ers to take a new approach to CAAD. Indeed, the
development of CAAD software applications, the devel-
opment of new modeling methodologies and the definition
of standards for information exchange create opportunities
for achieving distributed system integration.

Therefore, the opportunity is seen to implement a solu-
tion which will provide both objects of basic usability to
designers and the ready accessibility of those objects in the
form of programmed applications over the Web, and will
thus be manifested in the CAAD-enabled distributed
system.

The proposed distributed CAAD system consists of the
following major components: a database, a CAAD mod-
eler, server application and interface. These components
can be categorized by their residency. While the CAAD
modeler and its project database reside with the architec-
tural firms during the design phase, global project inde-
pendent databases and expert applications are spread

Distributed Design System as a New Paradigm Towards Future Collaborative Architectural Design Process 27

VRML + Java
Workspace

Abstract
Model

CAAD
Modeller
(form·Z)

Core
Model

Application
RepositoryDB Repository

INTERNET

ApplicationsProject DB
Building DB
Management DB

CORBACORBA

AbstractionManipulation

CORBACORBAJDBCJDBC

EAI

through the Internet environment to access the clients more
easily. The framework of network connections among
these components will be provided with the CORBA
distributed object computing environment.

The database is defined by three levels of scale from
large to small: global building database, local building
database and project database. The global building
database is built and managed by server database experts
and covers a wide range of architectural data from simple
drawing libraries to architecturally meaningful definitions
such as room and wall. This database needs to follow a
standardized data exchange agreement to be compatible
with most local client firms. In a firm, the building
database can be constructed by downloading relevant data
from a global database server and is maintained locally.
This building database should be small enough to concern
only the firm’s interest and large enough to avoid repetitive
data downloading from the remote database server,
maintaining efficiency. The project database is a subset of
the building database and it is targeted to a specific project,
which is currently in design development. This project
database is usually integrated with the CAAD modeler in
the design process.

Knowledge-based applications are available to the de-
signer from remote domain locations through the Internet.
These application servers get input from architects and
give feedback either through an intermediary application
viewer on the Web or directly back to the CAAD modeler
through the Open Database Connectivity (ODBC). Along
with the core model and the application viewer, a VRML
model abstracted from the core model will be used to pro-
vide a better understanding of the project structure of the
core model and the feedback from the remote applications.
Hence, the future research of a core - abstract model map-
ping and manipulation tool is based on the importance of
communication and interface design in a distributed
CAAD system.

The core model is meant to be the center of our pro-
posed distributed system. The core model is to be manipu-
lated and maintained in the CAAD modeler using the
modeler’s built-in interface. This core model offers a com-
plete geometric description of building project and gate-
way to the whole distributed system from a user’s point of
view when executing design tasks by generating and modi-
fying the project model. In addition to the CAAD mod-
eler’s own interface utilities for direct manipulation, this
core model will receive immediate feedback from the three
other components by passing and updating information of
current status to them. This is important in order to achieve
direct manipulation among all four components in an inte-
grated way, as well as individually. Thus, most of input
and output operations will be performed through this core
model to satisfy the issue of consistency and effectiveness.

The abstract model helps the architect conceptualized
building data on various layers. The abstract model is em-
powered by direct manipulation both in its own environ-
ment and in the integrated environment of the core model.
Integration is possible with direct mapping of information

from the abstract model data to the core model data and
vice versa.

Figure 3. Proposed Distributed CAAD System

In architecture, methods like sections or walk-through

are used to perceive abstract information on the traditional
paper medium or through computer graphics. In more
intelligent ways, the building model information can be
abstracted as three-dimensional graphs. With nodes and
path elements, the building model can be mapped into
simplified skeletons of information directories. These
directory structures are literally transparent. One can move
around them. Hence, VR techniques of navigation can
enhance one’s ability to grasp the information structure in
new ways (Park 2001).

The abstract model is designed to enable architects to
browse building information interactively, in a hierarchical
order. In the abstract model, building components can be
classified with zones, floors, rooms, doors and windows,
etc. These components are then assigned with simple 3D
entities such as spheres and cubes based on their class.
Selecting the 3D-node object explodes to the next level of
a set of child 3D-nodes, which belong to the selected one.
When selection reaches a 3D node with no child node,
detailed information of the component is provided in a text
format. Also, entity size and color give supplementary in-
formation about the corresponding building objects. When
the mouse is left over an entity, additional information is
given in a text window.

The proposed distributed system can be parceled into

28 Seung Hoon Han

four discrete elements: a core model in the CAAD modeler,
a supporting DBMS, an abstract visualization model in
VRML browser and a knowledge-based application. A
DBMS is involved in this system to support defining,
constructing, and manipulating databases for other system
components. All system components are connected to one
another as part of a distributed CAAD system. The data
flow in one or two directions: between 1) CAAD and
database system, 2) VRML and database system, 3) CAAD
and VRML application. The communication between
components is supported by direct manipulation and direct
information mapping. The issue of direct manipulation in
part of the core model will be continued in future studies.

For Distributed Virtual Environments (DVE), objects
have a graphical representation (scene-graph), an internal
state and a behavior usually defined by program code.
Such objects have to be added or removed from a scene in
real time, their behavior has to be tracked in real time and
their implementation has to be distributed immediately on
different computers in the network. Some objects can be
controlled by other objects and they should be able to
share information.

Further requirements result from security considerations,
e.g., protecting a scene from vandalism. An object can
grant or deny access to its data and behaviors. For this
purpose, it could provide user rights. In a process called
authentication, the identity of users and their objects has to
be checked.

When several objects try to access a shared resource, a
conflict can arise. Such conflicts can be avoided through
transaction mechanisms or they can be resolved by conflict
solution strategies towards decision-making (Diehl, 2001).
Other requirements are those common to distributed
systems on the Internet.

1. Low Bandwidth and Network Latency: On the
Internet, the bandwidth is low in general and
there is no guaranteed bandwidth. Network
latency is the amount of time it takes to
deliver a message over the network. To hide
network latency, a client can, for example,
perform speculative computations or use
buffering (Diehl, 2001).

2. Heterogeneity of Networks: Computers on the
Internet run with different operating systems.
These operating systems often differ in the
programming languages and libraries they
provide. A solution to the problem is to use
platform-independent languages like Java and
VRML, or architectures like CORBA, which
achieve platform-independence through
standardized protocols.

3. Distributed Interactions: Objects which inter-
act in distributed systems can be controlled by
programs or users at different computers. The
computations that involve clients must be syn-
chronized.

4. Scalability: A distributed system scales up if it
works with large numbers of clients and ob-
jects. To achieve scalability, it is ideal that

work is equally distributed to all clients and
there are no bottlenecks in the communication
structure. Most recent rendering techniques in
VR have been developed on high-end graphics
workstations. On the Internet, a scene needs to
be rendered on computers with less computing
power and thus rendering algorithms are
preferable which scale down, i.e., yield near-
photo-realistic results on high-end machines,
but also less precise but acceptable results on
personal computers.

5. Failure Handling: There is a trade-off between
reliability and speed of transaction of mes-
sages on the Internet: lost messages must be
resent. Monitoring the quality of transmission
can be used to adapt it (Greenhalgh, 1999).

4. A WORKING PROTOTYPE

There can be various architectural applications available
in a distributed virtual design environment. Designers and
engineers can meet in the virtual counterpart of a new
building before the first foundation stone is laid. In the
early design stages, the effects of building design projects
can also be visualized through a virtual world for partici-
pating decision makers. This way, collaborative design
processes can be simulated without consumption of real
materials. Nowadays, such experiments are getting more
effective for the actual building process by using Distrib-
uted Multi-User Technologies (DMUTech) for the Internet.

This section is concerned with the design and realization
of distributed collaborative virtual environment using
DMUTech, named ARCH:DMUVR (ARCHitectural Sup-
port of Distributed Multi-User Virtual Reality), a working
prototype of 3D computer-generated design environment,
which actively supports collaboration between distributed
participants. The approach taken in this system reflects
both the management of interpersonal communication and
the utilization of connection in distributed systems.

The role of ARCH:DMUVR here is to help architects
make better design decisions with real-time presentation,
communication, collaboration, feedback, and evaluation,
especially in geometric aspects of the building design. The
following key characteristics of the distributed systems
have been reviewed and prototyped in terms of
computation to gain successful implementation of
ARCH:DMUVR:

1. Presentation: There is a notional world or
space presenting design proposals, which is
the virtual environment, generated from the
core design model, activated as the abstract
model, and visualized by VRML plug-in for
the Internet browsers.

2. Representation: Every client is represented or
embodied within the virtual environment us-
ing avatars and is visualized to other users by
means of this embodiment to enhance access
and comprehension. Each user is autonomous
and able to move independently around the

Distributed Design System as a New Paradigm Towards Future Collaborative Architectural Design Process 29

virtual environment. Building design compo-
nents which are objects in the virtual envi-
ronment are extracted from the scene-graph,
and represented by a separate Graphical User
Interface (GUI) called 3D Building Object
Editor for the system (See Figure 6, left side).

3. Communication and Collaboration: Partici-
pants can communicate and collaborate in
many different ways through different com-
munication channels within the computational
and networking domains. A chatting window,
for example, is provided for textual inter-
communication using a specific communica-
tion channel, and a 3D Building Object Editor
is used for distributed collaborative design
among distributed participants through a dif-
ferent communication channel.

4. Negotiation and Decision-Making: The
proposed system is also concerned with
improving the support for collaborative
decision-making based on observations of
critical issues in agreement and negotiation
drawn from the discipline of social science.
When a participant in the design team
attempts to update a design proposal, for
instance, an agreement must be reached from
all other connecting users via a networked
agreement procedure in the system.

5. Evaluation: The most important concept for
evaluation is observations of and reflections
on the effectiveness and shortcomings of the
distribution aspects of the developed system.
A dynamic Web-based system evaluating
application is implemented for the purpose of
those observations, and its data are gotten
from the user inputs, stored as weighted-
values in the server, retrieved by the clients
when requested, and reviewed by experts for
future development.

The proposed prototype system supporting the above
features is an integrated application environment, using
DMUTech, which is accessible and usable to all the
experts in the building design team, and which supports a
wide spectrum of collaborative activities in the following
three major realms of integration; ARCH:DMUVR aims to
support not only the sharing of information [Data-Control
Integration] but also the sharing of understanding
[Control-Interface Integration] by providing the design
developing tools for different aspects that can be plugged
into it, and detail the additional solution to a shared
building representation [Data-Interface Integration] for the
virtual design environment (Han, 2005).

A VRML browser usually allows two primitive network
operations: hyper-links and inclusion of media stored on
different servers in the network. DMUTech is used for all
aspects of network communication in multi-user worlds
which have not been provided by the VRML browser.
Essential requirements of DMUTechs are listed below
(Roehl et al. 1997):

1. Adding, Removing, and Modifying Objects: If
a user enters or leaves the world, or adds,
removes, or alters an object, these changes
must be performed in the view of all users.
Users and objects must be registered; some
objects might be owned by specific users.

2. Dispatching Changes: If an avatar or a scene
object changes its position, orientation or state
in some way, its new information must be the
same in the views of all users. Users may have
different rights to change objects and to
choose modifying applications.

3. Text and Media Transmitting: Real-time text
or media transmissions, similar to those used
for Internet-conferencing tools, should ease
communication among users.

The VRML browser and the Java applets can communi-
cate via the EAI (External Authoring Interface). But, for
the transmission of time-uncritical, large-scaled messages
among browsers, it would be better to use CORBA and its
network protocol, IIOP (Internet Inter-ORB Protocol).
These browsers are now capable of communicating
through an ORB. The programmer no longer needs to
write code for sending messages to other hosts, but simply
calls methods of the objects, which actually exist at other
hosts where the methods get executed. For textual interac-
tion between browsers, which is actually interacted by
participants, IIOP is too slow, and TCP (Transfer Control
Protocol) is more appropriate for their communication.

Java offers a rich set of protocols for network
communication. These include HTTP (Hypertext Transfer
Protocol) connection, TCP, and distributed objects using
IIOP, but it also provides interfaces like the EAI to access
Java programs. Hence, it is possible to control a 3D scene
from Java or a Java applet. Other instances of the system
can run on different computers and these instances can
communicate, synchronize and enforce consistency by
using Java network programming.

In sum, the following are used in the implementation of
ARCH:DMUVR:

• Java- and EAI-based Approaches: With the
EAI, it is possible for an applet in a standard
Web browser to access the scene-graph of an
embedded VRML browser as a Plug-In. Thus,
a multi-user browser with integrated
DMUTech can be implemented as Java ap-
plets in a Java-enabled browser. This approach
requires communication channels using TCP,
a wire protocol between application layers.

• CORBA-based Approaches: CORBA is an ar-
chitecture for distributed objects in heteroge-
neous networks and allows objects to mutu-
ally access their services. The services pro-
vided by an object are specified as Interface
Definition Language. These specifications are
helpful not only for the programmer but also
for other objects invoked dynamically. In the
CORBA architecture, objects can be imple-
mented in different languages. CORBA also

30 Seung Hoon Han

DVE
CENTRAL
SERVER

PEER 1

PEER 2 PEER 3

CORBA
SERVER-CLIENTDVE

CENTRAL
SERVER

PEER 1

PEER 2 PEER 3

CORBA
SERVER-CLIENT

CORBA
SERVER-CLIENT

offers a variety of services for distributed
systems (Han, 2004).

TCP establishes point-to-point connections between the
server and the client. A number of messages can be sent
over these connections in both directions. To communicate
with a computer, a socket is created and then the input and
output streams of the socket are accessed in a similar way
for the connected URL (Uniform Resource Locator).

In contrast to TCP, IIOP delivers messages directly be-
tween peers without passing the central server. In distrib-
uted systems, when a request to create an object in remote
memory is noticed, a surrogate referring to the remote ob-
ject is also created. In the local system, since messages
cannot be sent to the remote object directly, they are alter-
natively sent to the surrogate. The surrogate by itself can-
not process the request, so the ORB gets involved to inter-
cept and forward the message appropriately. The ORB on
the remote system translates a service request from a re-
quest through the local language, such as Java, C++, or
COBOL, to the implementation-neutral IDL, and forwards
this request via IIOP to the ORB on a server system where
a correct provider object is located. The server’s ORB then
translates an incoming request to the local language and
forwards it to the repository to search for the provider ob-
ject for processing. This way, different databases and ap-
plications can communicate as long as they conform to the
CORBA standard, even if they are written in different local
languages (Watanabe and Komatsu, 1997).

The protocol between clients and the server is specified
by the IDL. An interface is a set of signatures which
consist of the method name, its arguments and their types
as well as the method’s result type. It is possible for
different DMUTechs to detect their distributed methods via
CORBA’s language-independent interface definitions and
dynamic invocation.

Figure 4. Communication Architecture of CORBA

Most geometric elements of the building design brought

into this editor from the VRML browser lend themselves
to implementation and presentation as a service in the
system. Since there is diversity in realizing communication
between different design processes, such as between
different participants who have different knowledge-bases,
the main communication option of the 3D Building Object
Editor is direct peer-to-peer communication using CORBA.

In addition, the central server which already controlled a
few other communication channels cannot become a
bottleneck in this way.

In summary, ARCH:DMUVR is a kind of hybrid
architecture that handles the following six main
communication channels relative to the key features of the
system introduced previously, for effective collaboration
on the network:

• Virtual Reality Presentation: TCP.
• Avatar and Object Representation: TCP.
• Communication Interface: TCP.
• Collaborative 3D Building Object Editor:

IIOP.
• Agreement/Voting Interface for Negotiation:

TCP.
• Evaluator: IIOP.

Figure 5. ARCH:DMUVR Connectivity

ARCH:DMUVR aims at providing a virtually integrated
work space, although its contents are comprised of various
components brought from many sources. The prototype
can be started with Design Visualization Interface, the way
in which ARCH:DMUVR is accessed by normal users and
visualized to all connecting participants. It is anticipated
that the system will normally be used with 3D graphics,
and this is basically reflected in the design of a 3D GUI
and has been supported by VRML browsers as shown in
Figure 6, right side. At the top of this main window is the
3D graphical view of the building design visualized by
CosmoPlayer. An abstract VRML model is launched into
the interface for the previously selected building model,
and clients’ avatars are bound to the built VR environment.
This shows a view into the virtual world as the graphical
client of ARCH:DMUVR. At the bottom of the window is
the communication interface which makes it possible for
users to communicate with each other about the building
model through textual exchange and share information.
The user connecting to the system requires an
authentication.

In multi-user environments, avatars play an important
role as the virtual representation of a user. It is located at
the viewpoint of the representing user from which she or
he looks at the scene. The shape of the avatar determines
how the user is seen by other users. If a user navigates
through the scene and moves the viewpoint, the avatar also

Distributed Design System as a New Paradigm Towards Future Collaborative Architectural Design Process 31

moves in the views of the other users.
Specific building component data to be used in the

application server can be obtained either continuously
from the client’s local computer using middleware via IIOP,
as long as the connection with the client is maintained, or
discretely by packages of data through the database
repository at reasonable time intervals. While connected to
the server application, the client can receive real-time
mapping results from the server.

Figure 6. 3D Object Editor and Design Visualization Interface

ARCH:DMUVR has a feature to bring data into the 3D

Design Object Editor, which is a GUI support of the
collaborative design environment; that is, CoDesign on the
menu bar of the initial ARCH:DMUVR system calls the
Application Launcher, which shows available applications
distributed on the Internet and allows the user to launch
those applications.

Figure 7. Menu Component of ARCH:DMUVR

Figure 8. Application Launcher

Whenever an application is requested from the user by

choosing an item from the Application Launcher, it

searches the Internet using the naming service provided by
CORBA, and connects to the local computer which owns
relevant applications and data. All loaded geometric data
from the local computer can be mapped to the 3D Design
Object Editor, and transformed to 3D graphic components.
Modified data using this editor are passed to the Design
Visualization Interface, examined above, for a VR presen-
tation, and dispatched to all participating users for collabo-
ration.

3D geometric building data transferred from the client’s
local database are mapped to the 3D Design Object Editor
and visualized in the Design Visualization Interface. The
Design Object Editor is a specific application that is
owned by a client and distributed on the Internet. Currently,
ARCH:DMUVR can connect six different distributed ap-
plications and databases categorized by building compo-
nents, such as slabs, columns, walls, windows, doors, and
lighting; it is assumed that each application belongs to a
different knowledge-based client. Those applications con-
trol the components of the scene-graph in the Design Visu-
alization Interface, and linkage between the two interfaces
is maintained by the application server, which is an owner
of the application.

This 3D GUI is the way in which design proposals are
authorized in 3D graphics. The building objects can be
drawn using 3D graphic algorithms at the central canvas,
and can be modified by altering the properties at the right-
side in this interface. Altered data using this editor are
transferred to, not only the central server to dispatch them
to all clients for their modified VR visualization, but also
to the application server from which the 3D Design Object
Editor was originally launched, in order to pass those data
to other clients’ Design Object Editor interfaces and to
change their drawings simultaneously. The current version
of the 3D Design Object Editor supports collaboration only
in geometric aspects of the building design due to
limitation of the building property data.

Supplemental functions for design manipulation are also
provided at the bottom of the interface. Such tools are not
for collaboration, but for personal operations between
current single user’s 3D Object Editor and the VR
Visualization Interface. Those actions are network-
independent and not broadcast to other clients. For
example, as shown in Figure 6, when a user wants to
remove the upper slab from the scene for a better view, this
action can be requested at the 3D Object Editor, and the
results are shown directly in his visualization interface.
The axes on the canvas can also be toggled individually.

One of important requirements for operating
ARCH:DMUVR is the security consideration. During col-
laboration, the scene-graph must be protected all the time
from any possible bad behaviors or accidental changes.
For this purpose, at the middle of the design update proce-
dure is the Agreement Interface. This interface plays an
important role in mediation of different opinions arising
from the decision-making process. When a client attempts
to update a design proposal with the 3D Object Editor, this
action is immediately notified to all other clients who can

32 Seung Hoon Han

grant or deny access to data and its behavior by responding
to the Agreement Interface.

This interface uses the voting system, although the rule
of getting agreement can be considered in various forms.
Users’ responses are anonymously collected in the server
machine, and the server returns the voting result to all cli-
ents. Once the applicant for the design update acquires the
votes for agreement from half or more of the respondents,
the design proposal can be modified. This networked
agreement procedure will help the design participants col-
laborate in a reasonable, positive manner (Han, 2004).

Every time the user navigates through the scene, the
VRML browser sends position and rotation information to
the server. When a second or third browser loads the same
scene, it also connects to the server. From that point,
movement information from one browser is sent to other
browsers and is shared via the server. With this interaction
between users, the VR system interface will make it
possible to develop a real-time collaborative system for
architectural environments via the Internet.

The ARCH:DMUVR system includes a communication
interface which is a tool for sharing clients’ messages,
remarks, and immediate thoughts while navigating through
the virtual places. All open interactions occurring are
displayed in a textual chatting window identifying other
clients and their actions within the scene. This
communication interface is called when the client-side
applet is activated and the contents of the communication
are recorded in a server-side log file.

Afterwards, all the information logged into the system
can be analyzed, and attached to design updates for tested
environments. The communication interface has a link to
the evaluation interface which enables the clients to leave
more specific comments. This feedback procedure will
enable every member-user to participate collaboratively in
a step-by-step design process.

Figure 9. Communication Interface

The Design Evaluating System is to be integrated into

the ARCH:DMUVR system as an evaluator of the modi-
fied environments as a result of collaboration. Two differ-
ent aspects of design evaluation can be considered: One is
a qualitative evaluation which is reflection and feedback
including subjective thoughts of the design update in point
of the beauty of the interior or exterior space. For this pur-
pose, an interactive evaluation interface using dynamic
Web forms through server-side ColdFusion scripts assist to
create new evaluation values, enter clients’ evaluations,
and save them into the database with login information.

This ColdFusion access to the database and to Java
applications is possible by JDBC technology based on the
ODBC. In general, ODBC enables direct connection,
making two discrete systems integrated. JDBC serves as a
mechanical joint between programming code objects and
project database entities.

Evaluations consist of scoring evaluation criteria by
selecting a radio button associated with a score value, and
leaving a comment for each criterion in a text field. Scores
and comments entered in the form are sent to the server-
side and saved in the system database with a client ID and
a date written. A later appendix from other clients can be
filled out through the same interface and added
immediately to the database as new records. Then, all
evaluations stored will be retrieved and displayed on the
result form in chronological order (Han, 2004).

The other evaluation is quantitative and relative to
building performance for the modified design proposals.
This kind of evaluation uses objective variables and rules
for measuring building performance, and contains many
arithmetic operations. Design Evaluating Applications for
this purpose are built as distributed applications, which are
located at and called from distributed experts’ computer
systems connected to the Internet. CORBA technology is
applied to the implementation of this evaluator integrated
in ARCH:DMUVR; The Design Evaluating Application
remains ongoing and will be the subject of future work.

The role of the Design Evaluating Application in the
system is to help architects make better design decisions
with immediate feedback. It is proposed as a discrete ap-
plication, which will run on a remote server and be execu-
table on the Internet. This results from the assumption that
in the future, bigger expert applications will be built on a
server domain and will provide evaluation results to clients.

5. CONCLUSION AND DISCUSSION

This paper presented the possibility of a distributed
system for architectural purpose. The distributed object
approach to integration has benefits when we consider the
current technological and economic state of architectural
collaboration. Instead of integration being achieved
through static models that define the structure of shared
information, the collaboration models were able to be
distributed through a network to be easily accessed and
modified from multiple users in different locations. This
approach will promote the use of computers on-site, in
new terms of Network-Aided Architectural Design.

While experimenting and simulating ARCH:DMUVR in
collaboration with various professions in the architectural
field, the following have been observed:

• ARCH:DMUVR is a prototypical product of
the distributed system model. As such I think
it has been successful. It has provided a dem-
onstration platform to explore the concepts of
collaborative design.

• A framework of distributed object computing
environments is usable, since it has been help-

Distributed Design System as a New Paradigm Towards Future Collaborative Architectural Design Process 33

ful for holding distributed meetings in diver-
sity of professionals over networks.

• The current focus on peer-to-peer communica-
tion, based on sharing computation with other
machines in the network, is promising. It has
been particularly satisfying to see other ex-
perts deriving new insight from its use and en-
joying involvement in the virtual design proc-
ess with the system.

The contributions of this research fall into the following
categories:

• The concept of a core model combined with
the distributed computing approach articulates
the complex nature of design development
and information management into one well-
defined domain. Using this core model as a
central work object, the system can eliminate
inconsistency of information storage and flow.

• The visualization and manipulation of the ab-
stract model lightens the architects’ cognitive
burden in various design tasks. 3D-based di-
rect manipulation and mapping concepts are
incorporated in the design and implementation
process. The potential of a Web-based model-
ing markup language such as VRML is dem-
onstrated, and also the power of an OOP lan-
guage is examined; Java offers satisfactory
flexibility and availability of this abstract
model to the distributed CAAD system.

• A knowledge-based application, directly con-
nected to three other components (legacy
modeller, abstract model, and DBMS) makes
it possible to test the performance of the dis-
tributed system as a design tool; adaptability
of the system for future uses with other appli-
cations are also evaluated.

The main theme around which this work has been
organized is that of distribution. Existing integrative multi-
user design systems can be used to build collaborative
design authoring system; however, they do not explicitly
consider distribution as a tool of communication and
collaboration.

The suggested system attempts to become a general-
purpose distributed VR system with features including a
well-defined API; non-specialist world authoring tools;
direct manipulation of virtual objects; and a systematic
model of object behavior.

It lacks, however, support for popular graphical file for-
mats of core models, such as AutoCAD and form·Z; that is,
results of virtual object manipulation and world implemen-
tation with abstract models cannot be transmitted back to
the core models in the current version. This feature will be
researched and developed for the next version of
ARCH:DMUVR. 3D-based direct manipulation and map-
ping concepts are also incorporated in the design and im-
plementation process as future work. In addition, qualita-
tive evaluation tools for the design alternatives generated
by ARCH:DMUVR are designed to be built as distributed

applications that will run on the Internet. CORBA technol-
ogy will be utilized for the implementation of the evaluator
that will be integrated in the next version of the
ARCH:DMUVR system.

This research proposed a working prototype with an
abstract model designed to provide a CAAD information
interface for the Internet. This abstract model not only
provides supplementary visualization tools for in-house
project participants, but it also becomes an interface for
remote participants who need a simplified project informa-
tion-browsing tool. In sum, the Internet provides partici-
pants in the design team with a low cost collaboration en-
vironment.

REFERENCES

Diehl, S. (2001) “Distributed Virtual Worlds – Foundations
and Implementation Techniques Using VRML, Java,
and CORBA,” Springer, Berlin, Germany.

Fingar, P. and Stikeleather, J. (1996) “Distributed objects
for business,” http://www.sun.com/sunworldonline-
/swol-04-1996/swol-04-oobook.html.

Greenhalgh, C. (1999) “Large Scale Collaborative Virtual
Environments,” Springer, London, Great Britain.

Han, S. (2004) “A Working Prototype of Distributed Col-
laborative Architectural Design System,” University of
Michigan, Ann Arbor, Michigan, USA.

Han, S. (2005) “Thoughts and Tools of Collaborative
Architectural Design Process,” Architectural Research,
Vol. 7, No. 1, Architectural Institute of Korea

Khemlani, L., Kalay, Y., and Choi, J. (1998) “Integrated
Model to Support Distributed Collaborative Design of
Buildings,” Automation in Construction, Vol. 7, No. 1,
Elsevier Science, New York, USA.

Orfali, R., Harkey, D., and Edwards, J. (1997) “CORBA,
Java, and the Object Web,” http://www.byte.com/art-
/9710/sec6/art3.htm.

Park, H. (2001) “Distributed Representation of an Archi-
tectural Model,” Graduate School of Design, Harvard
University, Cambridge, Massachusetts, USA.

Pohl, J. and Myers, L. (1994) “A Distributed Cooperative
Model for Architectural Design,” Automation in
Construction, Vol. 3, Elsevier Science, New York, USA.

Roehl, B., Couch, J., Reed-Ballreich, C., Rohaly, T., and
Brown, G. (1997) “Late Night VRML 2.0 with Java,”
Ziff-Davis Press, Emeryville, Great Britain.

Sariyildiz, S. and Schwenck, M. (1996) “Integrated Sup-
port Systems for Architectural Design,” Proceedings of
the 3rd Conference on Design and Decision Support
Systems in Architecture and Urban Planning, Belgium.

Sariyildiz, S., Volker, H., and Schwenck, M. (1997) “Im-
proving CAAD by Applying Integrated Design Support
Systmes and New Design Methodologies,” CAAD Fu-
tures 1997, Kluwer Academic Publishers, The Nether-
lands.

Watanabe, S. and Komatsu, K. (1997) “The Distributed
Architectural Model for Co-operative Design,” CAAD
Futures 1997, Kluwer Academic Publishers, The
Netherlands.

(Data of Submission : 2005. 1.14)

