• Title/Summary/Keyword: Convergence Network

Search Result 4,060, Processing Time 0.034 seconds

Spatial clustering of pedestrian traffic accidents in Daegu (대구광역시 교통약자 보행자 교통사고 공간 군집 분석)

  • Hwang, Yeongeun;Park, Seonghee;Choi, Hwabeen;Yoon, Sanghoo
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.75-83
    • /
    • 2022
  • Korea, which has the highest pedestrian fatality rate among OECD countries, is making efforts to improve the safe walking environment by enacting laws focusing on pedestrian. Spatial clustering was conducted with scan statistics after examining the social network data related to traffic accidents for children and seniors. The word cloud was used to examine people's recognition Campaigns for children and literature survey for seniors were in main concern. Naedang and Yongsan are the regions with the highest relative risk of weak pedestrian for children and seniors. On the contrary, Bongmu and Beomeo are the lowest relative risk region. Naedang-dong and Yongsan-dong of Daegu Metropolitan City were identified as vulnerable areas for pedestrian safety due to the high risk of pedestrian accidents for children and the elderly. This means that the scan statistics are effective in searching for traffic accident risk areas.

Real-time Online Study and Exam Attitude Dataset Design and Implementation (실시간 온라인 수업 및 시험 태도 데이터 세트 설계 및 구현)

  • Kim, Junsik;Lee, Chanhwi;Song, Hyok;Kwon, Soonchul
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.124-132
    • /
    • 2022
  • Recently, due to COVID-19, online remote classes and non-face-to-face exams have made it difficult to manage class attitudes and exam cheating. Therefore, there is a need for a system that automatically recognizes and detects the behavior of students online. Action recognition, which recognizes human action, is one of the most studied technologies in computer vision. In order to develop such a technology, data including human arm movement information and information about surrounding objects, which can be key information in online classes and exams, are needed. It is difficult to apply the existing dataset to this system because it is classified into various fields or consists of daily life action. In this paper, we propose a dataset that can classify attitudes in real-time online tests and classes. In addition, it shows whether the proposed dataset is correctly constructed through comparison with the existing action recognition dataset.

Design and Implement a Forgery-safe Blockchain-based Academic Credential Verification System (위변조에 안전한 블록체인 기반 학력 검증 시스템 설계 및 구현)

  • Jung-oh Park
    • Journal of Industrial Convergence
    • /
    • v.21 no.7
    • /
    • pp.41-49
    • /
    • 2023
  • In recent years, various educational institutions have used online certificate services to verify academic achievement related to graduation and grades. However, the certificate of the existing system has limitations in verifying and tracking whether it is true or not and detailed academic background. In this regard, cases of forgery/falsification of online/offline certificates continue to occur. This study proposes a blockchain-based verification method that is safe from forgery and alteration, focusing on university institutions. Necessary information such as detailed class categories for each department, attendance, and detailed grades was collected/analyzed to create a linkage relationship through blockchain. In addition, the system/network environment required for blockchain sharing was considered, and it was implemented as an extension module in the form of an independent web application. As a result of the block chain verification, it was proved that the safe trust verification of educational information and the relationship between detailed information can be traced. This study aims to contribute to the improvement of academic credential verification services and information security for Korean educational institutions in the future.

Analysis of Consulting Results on AI Education Leading School Support Research Group (AI교육 선도학교 지원연구단 컨설팅 운영 결과 분석)

  • Kim, Sungju;Woo, Seokjun;Koo, Dukhoi;Shin, SeungKi
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.113-121
    • /
    • 2021
  • This study was intended to present an online survey and analysis of the survey results after the operation of the AI education leading school initiation workshop consulting training and the creative convergence type information education room consulting training. Through this, it was confirmed that there is a perception that support such as AI education leading school consulting training is necessary, and the network should be activated to share best practices and an efficient and flexible operating system in terms of operation of leading schools nationwide. could In addition, while the subjects of the survey recognized the importance of AI education-related competency, it was identified that they had low awareness of their AI education-related competency, and recognized the need for various support for systematic and customized AI education-related competency reinforcement.

  • PDF

Prediction System of Running Heart Rate based on FitRec (FitRec 기반 달리기 심박수 예측 시스템)

  • Kim, Jinwook;Kim, Kwanghyun;Seon, Joonho;Lee, Seongwoo;Kim, Soo-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.165-171
    • /
    • 2022
  • Human heart rate can be used to measure exercise intensity as an important indicator. If heart rate can be predicted, exercise can be performed more efficiently by regulating the intensity of exercise in advance. In this paper, a FitRec-based prediction model is proposed for estimating running heart rate for users. Endomondo data is utilized for training the proposed prediction model. The processing algorithms for time-series data, such as LSTM(long short term memory) and GRU(gated recurrent unit), are employed to compare their performance. On the basis of simulation results, it was demonstrated that the proposed model trained with running exercise performed better than the model trained with several cardiac exercises.

A Data Sampling Technique for Secure Dataset Using Weight VAE Oversampling(W-VAE) (가중치 VAE 오버샘플링(W-VAE)을 이용한 보안데이터셋 샘플링 기법 연구)

  • Kang, Hanbada;Lee, Jaewoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1872-1879
    • /
    • 2022
  • Recently, with the development of artificial intelligence technology, research to use artificial intelligence to detect hacking attacks is being actively conducted. However, the fact that security data is a representative imbalanced data is recognized as a major obstacle in composing the learning data, which is the key to the development of artificial intelligence models. Therefore, in this paper, we propose a W-VAE oversampling technique that applies VAE, a deep learning generation model, to data extraction for oversampling, and sets the number of oversampling for each class through weight calculation using K-NN for sampling. In this paper, a total of five oversampling techniques such as ROS, SMOTE, and ADASYN were applied through NSL-KDD, an open network security dataset. The oversampling method proposed in this paper proved to be the most effective sampling method compared to the existing oversampling method through the F1-Score evaluation index.

Why Are People Wearing Masks When They Are Relieved of Their Obligation? -Choosing Under Uncertainty by News Big Data Analysis (착용 의무 해제에도 마스크를 쓰는 이유 -뉴스 빅데이터 분석으로 확인한 불확실성하의 선택)

  • Ki-Ryang Seo;SangKhee Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.113-119
    • /
    • 2023
  • Despite the lifting of the mandatory wearing of masks, which was the main tool of the COVID-19 quarantine policy, we paid attention to the fact that some people are still wearing masks, and we wanted to clarify why people do not take off their masks. Through a survey in this regard, we were able to ascertain why some people continue to wear masks in a broader context. In this article, we directly and indirectly confirm the hidden side of citizens' continued wearing of masks by analyzing how the lifting of the mask-wearing obligation was reported in media articles that have a significant impact on citizens' behavior and attitude. Through this, it was confirmed that citizens continue to wear masks to protect themselves in an uncertain situation where the COVID-19 endemic has not been declared, despite the quarantine authorities' announcement of lifting the mandatory wearing. In a situation where crises such as COVID-19 are expected to repeat frequently in the future, it was concluded that it is important to build trust in the quarantine authorities.

Updating Korean Disability Weights for Causes of Disease: Adopting an Add-on Study Method

  • Dasom Im;Noor Afif Mahmudah;Seok-Jun Yoon;Young-Eun Kim;Don-Hyung Lee;Yeon-hee Kim;Yoon-Sun Jung;Minsu Ock
    • Journal of Preventive Medicine and Public Health
    • /
    • v.56 no.4
    • /
    • pp.291-302
    • /
    • 2023
  • Objectives: Disability weights require regular updates, as they are influenced by both diseases and societal perceptions. Consequently, it is necessary to develop an up-to-date list of the causes of diseases and establish a survey panel for estimating disability weights. Accordingly, this study was conducted to calculate, assess, modify, and validate disability weights suitable for Korea, accounting for its cultural and social characteristics. Methods: The 380 causes of disease used in the survey were derived from the 2019 Global Burden of Disease Collaborative Network and from 2019 and 2020 Korean studies on disability weights for causes of disease. Disability weights were reanalyzed by integrating the findings of an earlier survey on disability weights in Korea with those of the additional survey conducted in this study. The responses were transformed into paired comparisons and analyzed using probit regression analysis. Coefficients for the causes of disease were converted into predicted probabilities, and disability weights in 2 models (model 1 and 2) were rescaled using a normal distribution and the natural logarithm, respectively. Results: The mean values for the 380 causes of disease in models 1 and 2 were 0.488 and 0.369, respectively. Both models exhibited the same order of disability weights. The disability weights for the 300 causes of disease present in both the current and 2019 studies demonstrated a Pearson correlation coefficient of 0.994 (p=0.001 for both models). This study presents a detailed add-on approach for calculating disability weights. Conclusions: This method can be employed in other countries to obtain timely disability weight estimations.

Transfer Learning-Based Vibration Fault Diagnosis for Ball Bearing (전이학습을 이용한 볼베어링의 진동진단)

  • Subin Hong;Youngdae Lee;Chanwoo Moon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.845-850
    • /
    • 2023
  • In this paper, we propose a method for diagnosing ball bearing vibration using transfer learning. STFT, which can analyze vibration signals in time-frequency, was used as input to CNN to diagnose failures. In order to rapidly learn CNN-based deep artificial neural networks and improve diagnostic performance, we proposed a transfer learning-based deep learning learning technique. For transfer learning, the feature extractor and classifier were selectively learned using a VGG-based image classification model, the data set for learning was publicly available ball bearing vibration data provided by Case Western Reserve University, and performance was evaluated by comparing the proposed method with the existing CNN model. Experimental results not only prove that transfer learning is useful for condition diagnosis in ball bearing vibration data, but also allow other industries to use transfer learning to improve condition diagnosis.

The Impact of the U.S.-China Trade Dispute on the Global Supply Chain (미·중 무역분쟁이 글로벌 공급망에 미친 영향)

  • KIM DONGHO;GUO KESI
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.285-294
    • /
    • 2023
  • The trade dispute between China and the U.S. began before Corona and is easing at this time by bringing new changes to the pendemic, and the development of the Chinese manufacturing industry has increased interdependence between the U.S. and China. However, the overall global trade should be less than before pendemic, and Korea's response strategy should be made serious at this time.However, new changes are taking place again these days. With the recent outbreak of COVID-19 in Shanghai, China, new changes are expected to occur in China's industrial chain. As the Chinese government strictly creates quarantine figures for COVID-19, many factories and companies among industries are forced to close for a while. As economic globalization and division of labor continue to deepen, multinationals choose suppliers and industrial chains within the world to form a global supply chain structure to pursue cost minimization and profit maximization. China is an indispensable part. Whether it is China, the U.S. or Korea, it can be a risk and an opportunity now.