• 제목/요약/키워드: Conventional system

검색결과 14,449건 처리시간 0.033초

현장성능시험에 의한 외기전용과 냉각식 + 재열 공조기의 운전비 비교 (Operation Cost Comparison of Dedicated Outdoor and Cooling + reheating Air-conditioning Systems by On-site Performance Test)

  • 김영일;김정민;정광섭;박승태
    • 한국지열·수열에너지학회논문집
    • /
    • 제7권2호
    • /
    • pp.37-42
    • /
    • 2011
  • Dedicated outdoor air(DOA) system which conditions the outdoor air separately is superior to conventional Cooling + reheating system with respect to energy consumption and indoor comfort. Since the sensible and latent load characteristics of indoor and outdoor are different, it is more efficient to treat them separately. In this study, cycle analysis and on-site performance test of DOA system have been conducted. The study shows that DOA requires 50% less equivalent energy than the conventional system. The on-site performance test of a prototype shows that the coefficient of performance(COP) of the DOA system is 37% higher than the conventional system.

TDM 수신 방식의 단일 RF 체인 MIMO 시스템에서 STO 특성 분석 및 보상 (Sampling Time Offset and Compensation in TDM-Based Single RF Chain MIMO Receiver)

  • 안창영;유흥균
    • 한국전자파학회논문지
    • /
    • 제24권10호
    • /
    • pp.994-1000
    • /
    • 2013
  • 기존의 MIMO 시스템은 수신 안테나 수만큼 신호처리를 위한 RF 체인이 필요하다. 안테나를 늘릴 경우, RF 체인도 같이 늘어나기 때문에 전력 소비량이 급격하게 증가하게 된다. 이러한 이유로 더 많은 안테나의 MIMO 시스템을 전력이 제한적인 모바일 단말기에 적용하기에는 어려움이 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 단일 RF 체인을 이용하여 다중 안테나의 신호를 수신하는 시스템을 제안한다. 제안하는 시스템은 STO(Sampling Timing Offset)을 동기 신호와 신호의 위상 각 추정을 통해 보상하였을 때 다중 RF chain을 사용하는 일반적인 MIMO 시스템과 유사한 성능을 낸다. 따라서 단일 RF chain을 통하여 전력 소비를 감소시키면서 다중 안테나의 MIMO-OFDM 시스템을 구현할 수 있음을 확인하였다.

Sliding Mode Control of SPMSM Drivers: An Online Gain Tuning Approach with Unknown System Parameters

  • Jung, Jin-Woo;Leu, Viet Quoc;Dang, Dong Quang;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.980-988
    • /
    • 2014
  • This paper proposes an online gain tuning algorithm for a robust sliding mode speed controller of surface-mounted permanent magnet synchronous motor (SPMSM) drives. The proposed controller is constructed by a fuzzy neural network control (FNNC) term and a sliding mode control (SMC) term. Based on a fuzzy neural network, the first term is designed to approximate the nonlinear factors while the second term is used to stabilize the system dynamics by employing an online tuning rule. Therefore, unlike conventional speed controllers, the proposed control scheme does not require any knowledge of the system parameters. As a result, it is very robust to system parameter variations. The stability evaluation of the proposed control system is fully described based on the Lyapunov theory and related lemmas. For comparison purposes, a conventional sliding mode control (SMC) scheme is also tested under the same conditions as the proposed control method. It can be seen from the experimental results that the proposed SMC scheme exhibits better control performance (i.e., faster and more robust dynamic behavior, and a smaller steady-state error) than the conventional SMC method.

대칭성분을 이용한 3상 배전계통 조류계산 기법 (A New Distribution System Power Flow Method Using Symmetrical Components)

  • 최정환;정성일;박제영;김광호;김재언;박종근
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권1호
    • /
    • pp.15-22
    • /
    • 2002
  • This paper proposes a new power flow method for distribution system analysis by modifying the conventional back/forward sweep method using symmetrical components. Since the proposed method backward and forward sweeps with the variables expressed by symmetrical components, this method reduces computation time for matrix calculations; therefore, it is able to reduce the computational burden for real-time distribution network analysis. The proposed method was also developed to effectively analyze the unbalanced distribution system installing AVR(Auto Voltage Regulator), shunt capacitors. The proposed algorithm was compared with the conventional Back/forward Sweep method by applying both methods to three phase unbalanced distribution system of IEEE 123-bus model, and the test results showed that the proposed method would outperformed the conventional method in real-time distribution system analysis.

Odd/Even Center Preamble 구조를 가진 OFDM/OQAM-IOTA 시스템 (OFDM/OQAM-IOTA System With Odd/Even Center Preamble Structure)

  • 강승원;허주;장경희
    • 한국통신학회논문지
    • /
    • 제30권12A호
    • /
    • pp.1153-1160
    • /
    • 2005
  • 일반적인 OFDM/QAM 시스템은 시간 영역에서 다중경로 채널에 강인한 특성을 갖기 위해 연속적인 심볼 사이에 보호구간(Guard Interval)을 삽입하는 반면, OFDM/OQAM(Offset QAM)-IOTA 시스템은 보호구간 대신에 시간과 주파수 영역에서 우수한 Localization 특성을 갖는 IOTA(Isotropic Orthogonal Transform Algorithm) 함수를 사용하며, 이로 인하여 OFDM/OQAM-IOTA 시스템은 현저하게 높은 주파수 사용 효율을 갖는다. 하지만 일반적인 OFDM/QAM 시스템에 사용된 채널 추정 방법을 변경 없이 OFDM/OQAM-IOTA 시스템에 적용할 경우 고유의 심볼간 간섭(ISI : Inter-Symbol Interference)이 발생하게 되므로 OFDM/OQAM-IOTA 시스템 채널 추정을 위해서는 별도의 프리앰블 구조를 사용하여야 한다. 본 논문에서는 OFDM/OQAM-IOTA 시스템 채널 추정에 적합한 새로운 프리앰블 구조를 제안하고, 제안된 프리앰블을 사용하여 Ideal 채널 추정과 중저속 이동 환경에서의 Practical 채별 추정을 수행하여, 그 결과를 일반적인 OFDM/QAM 시스템의 성능과 비교 분석한다. 시뮬레이션 결과에 의하면, 제안된 프리앰블 구조를 사용한 OFDM/OQAM-IOTA 시스템이 FFT 크기의 1/4을 보호구간으로 사용하는 일반적인 OFDM/QAM 시스템보다 Target BER 10-3에서 1.5 dB 정도의 Eb/NO 이득이 있으며, 또한 $25\%$ 정도의 데이터 전송률 이득을 갖는다.

다중여자 유도전동기의 안정도에 관한 연구 (A Study on Stabilization of Multi-Excited Induction Motor)

  • 강만원;김한성
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제9권4호
    • /
    • pp.78-85
    • /
    • 1995
  • This paper covers stability and stabilization of Multi-Excited Induction Motor used in numberous electric equipment system of industrial field. The induction motor with multi-excitation has tow sets of three-phase system : One is connected to the AC source to supply most power required at the load, and the other is to the inverter for variable frequency and/or magnitude of voltage. The conventional induction motor is operated under single excitation mode only, that is called induction mode. But in multi-excited induction motor both the induction mode and the synchronous mode are possible, and the proposed multi-excited induction motor can be driven as a synchronous motor by the extra three-phase input. At the synchronous mode the efficiency is improved so higher than that at induction mode or conventional induction motor. The rating of the inverter used for speed control of numberous electric equipment system can be reduced upto one-tenth of that for conventional induction motor. Also the cost and maintenance fee of multi-excited induction motor can be reduced compared to any other motor.

  • PDF

Real-Time Implementation of Brain Emotional Learning Developed for Digital Signal Processor-Based Interior Permanent Magnet Synchronous Motor Drive Systems

  • Sadeghi, Mohamad-Ali;Daryabeigi, Ehsan
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.74-81
    • /
    • 2014
  • In this study, a brain emotional learning-based intelligent controller (BELBIC) is developed for the speed control of an interior permanent magnet synchronous motor (IPMSM). A novel and simple model of the IPMSM drive structure is established with the intelligent control system, which controls motor speed accurately without the use of any conventional PI controllers and is independent of motor parameters. This study is conducted in both real time and simulation with a new control plant for a laboratory 3 ph, 3.8 Nm IPMSM digital signal processor (DSP)-based drive system. This DSP-based drive system is then compared with conventional BELBIC and an optimized conventional PI controller. Results show that the proposed method performs better than the other controllers and exhibits excellent control characteristics, such as fast response, simple implementation, and robustness with respect to disturbances and manufacturing imperfections.

실 제조공정을 위한 장력제어기의 성능 개선 (Performance Enhancement of Tension Controller for the Yarn Manufacturing Process)

  • 곽영신;임훈;이장명
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2054-2060
    • /
    • 2008
  • This paper aims at the performance enhancement of tension controller for the yarn manufacturing process. The tension controller is required to keep the tension constant while the yarn is manufactured by a draw and twist machine, which is essential and critical for good quality production of yarn, steel, paper, etc. This paper proposes a linear model of tension control plant to develop a precise tension control system, which is derived by the close observation of the conventional mathematical model of motor driving and tension control systems. It is shown by experiments that the proposed control system precisely maintains the tension constant within the error bound of 0.05% while the conventional PI controller has about 0.2% error. The control performance of the system has been compared to that of conventional PI control not only for constant speed control but also for transient speed control experiments.

온도측정 기반의 최적전압을 이용한 PV 시스템의 TMOV MPPT 제어 (TMOV MPPT Control of PV System with Temperature Measurement based Optimal Voltage)

  • 고재섭;정동화
    • 조명전기설비학회논문지
    • /
    • 제26권11호
    • /
    • pp.30-39
    • /
    • 2012
  • The characteristics of I-V and P-V of solar cell nonlinearly changes according to irradiation, temperature and load. Therefore, to use efficiently PV system, operating point must be always operating at maximum power point. Also, PV system is semiconductor, so it generates loss by temperature. But because of conventional MPPT methods are not considering temperature, it has problem which decrease efficiency. This paper proposes temperature measurement based optimal voltage(TMOV) MPPT algorithm using temperature measurement based optimal voltage. It analyzes characteristics of solar cell according to irradiation and temperature and conventional MPPT methods. The TMOV control algorithm proposed in this paper is compared and analyzed conventional MPPT methods. The validity of this paper proves using this result.

Optimal Design of a MW Class SCSG for a Tidal Current Power Generation System

  • Go, Byeong-Soo;Sung, Hae-Jin;Park, Minwon;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2271-2276
    • /
    • 2015
  • A superconducting synchronous generator (SCSG) can be expected to decrease the size and weight compared to conventional tidal current generators. This paper proposes an optimal design of a 2 MW class SCSG for a tidal current power generation system. The proposed optimal design of the SCSG will reduce the length of the high-temperature superconducting wire as well as the weight and volume of the SCSG. The 3D finite element method is used to analyze the magnetic field distribution. The optimized 2 MW SCSG is compared with a 2 MW conventional generator. As the optimized SCSG is more compact and lighter than a conventional generator, it will be efficiently applied to practical tidal power systems.