• Title/Summary/Keyword: Conventional machine learning

Search Result 295, Processing Time 0.028 seconds

Functional hierarchical clustering using shape distance

  • Kyungmin Ahn
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.5
    • /
    • pp.601-612
    • /
    • 2024
  • A functional clustering analysis is a crucial machine learning technique in functional data analysis. Many functional clustering methods have been developed to enhance clustering performance. Moreover, due to the phase variability between functions, elastic functional clustering methods, such as applying the Fisher-Rao metric, which can manage phase variation during clustering, have been developed to improve model performance. However, aligning functions without considering the phase variation can distort functional information because phase variation can be a natural characteristic of functions. Hence, we propose a state-of-the-art functional hierarchical clustering that can manage phase and amplitude variations of functional data. This approach is based on the phase and amplitude separation method using the norm-preserving time warping of functions. Due to its invariance property, this representation provides robust variability for phase and amplitude components of functions and improves clustering performance compared to conventional functional hierarchical clustering models. We demonstrate this framework using simulated and real data.

A Study On Memory Optimization for Applying Deep Learning to PC (딥러닝을 PC에 적용하기 위한 메모리 최적화에 관한 연구)

  • Lee, Hee-Yeol;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.136-141
    • /
    • 2017
  • In this paper, we propose an algorithm for memory optimization to apply deep learning to PC. The proposed algorithm minimizes the memory and computation processing time by reducing the amount of computation processing and data required in the conventional deep learning structure in a general PC. The algorithm proposed in this paper consists of three steps: a convolution layer configuration process using a random filter with discriminating power, a data reduction process using PCA, and a CNN structure creation using SVM. The learning process is not necessary in the convolution layer construction process using the discriminating random filter, thereby shortening the learning time of the overall deep learning. PCA reduces the amount of memory and computation throughput. The creation of the CNN structure using SVM maximizes the effect of reducing the amount of memory and computational throughput required. In order to evaluate the performance of the proposed algorithm, we experimented with Yale University's Extended Yale B face database. The results show that the algorithm proposed in this paper has a similar performance recognition rate compared with the existing CNN algorithm. And it was confirmed to be excellent. Based on the algorithm proposed in this paper, it is expected that a deep learning algorithm with many data and computation processes can be implemented in a general PC.

Investigations on data-driven stochastic optimal control and approximate-inference-based reinforcement learning methods (데이터 기반 확률론적 최적제어와 근사적 추론 기반 강화 학습 방법론에 관한 고찰)

  • Park, Jooyoung;Ji, Seunghyun;Sung, Keehoon;Heo, Seongman;Park, Kyungwook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.319-326
    • /
    • 2015
  • Recently in the fields o f stochastic optimal control ( SOC) and reinforcemnet l earning (RL), there have been a great deal of research efforts for the problem of finding data-based sub-optimal control policies. The conventional theory for finding optimal controllers via the value-function-based dynamic programming was established for solving the stochastic optimal control problems with solid theoretical background. However, they can be successfully applied only to extremely simple cases. Hence, the data-based modern approach, which tries to find sub-optimal solutions utilizing relevant data such as the state-transition and reward signals instead of rigorous mathematical analyses, is particularly attractive to practical applications. In this paper, we consider a couple of methods combining the modern SOC strategies and approximate inference together with machine-learning-based data treatment methods. Also, we apply the resultant methods to a variety of application domains including financial engineering, and observe their performance.

Applicability of Image Classification Using Deep Learning in Small Area : Case of Agricultural Lands Using UAV Image (딥러닝을 이용한 소규모 지역의 영상분류 적용성 분석 : UAV 영상을 이용한 농경지를 대상으로)

  • Choi, Seok-Keun;Lee, Soung-Ki;Kang, Yeon-Bin;Seong, Seon-Kyeong;Choi, Do-Yeon;Kim, Gwang-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Recently, high-resolution images can be easily acquired using UAV (Unmanned Aerial Vehicle), so that it is possible to produce small area observation and spatial information at low cost. In particular, research on the generation of cover maps in crop production areas is being actively conducted for monitoring the agricultural environment. As a result of comparing classification performance by applying RF(Random Forest), SVM(Support Vector Machine) and CNN(Convolutional Neural Network), deep learning classification method has many advantages in image classification. In particular, land cover classification using satellite images has the advantage of accuracy and time of classification using satellite image data set and pre-trained parameters. However, UAV images have different characteristics such as satellite images and spatial resolution, which makes it difficult to apply them. In order to solve this problem, we conducted a study on the application of deep learning algorithms that can be used for analyzing agricultural lands where UAV data sets and small-scale composite cover exist in Korea. In this study, we applied DeepLab V3 +, FC-DenseNet (Fully Convolutional DenseNets) and FRRN-B (Full-Resolution Residual Networks), the semantic image classification of the state-of-art algorithm, to UAV data set. As a result, DeepLab V3 + and FC-DenseNet have an overall accuracy of 97% and a Kappa coefficient of 0.92, which is higher than the conventional classification. The applicability of the cover classification using UAV images of small areas is shown.

Fault Diagnosis System based on Sound using Feature Extraction Method of Frequency Domain

  • Vununu, Caleb;Kwon, Oh-Heum;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.4
    • /
    • pp.450-463
    • /
    • 2018
  • Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sounds being inevitably corrupted by random disturbance, the most important part of the diagnosis consists of discovering the hidden elements inside the data that can reveal the faulty patterns. This paper presents a novel feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by the drills. Using the Fourier analysis, the magnitude spectrum of the sounds are extracted, converted into two-dimensional vectors and uniformly normalized in such a way that they can be represented as 8-bit grayscale images. Histogram equalization is then performed over the obtained images in order to adjust their very poor contrast. The obtained contrast enhanced images will be used as the features of our diagnosis system. Finally, principal component analysis is performed over the image features for reducing their dimensions and a nonlinear classifier is adopted to produce the final response. Unlike the conventional features, the results demonstrate that the proposed feature extraction method manages to capture the hidden health patterns of the sound.

Adaptive Speech Streaming Based on Packet Loss Prediction Using Support Vector Machine for Software-Based Multipoint Control Unit over IP Networks

  • Kang, Jin Ah;Han, Mikyong;Jang, Jong-Hyun;Kim, Hong Kook
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1064-1073
    • /
    • 2016
  • An adaptive speech streaming method to improve the perceived speech quality of a software-based multipoint control unit (SW-based MCU) over IP networks is proposed. First, the proposed method predicts whether the speech packet to be transmitted is lost. To this end, the proposed method learns the pattern of packet losses in the IP network, and then predicts the loss of the packet to be transmitted over that IP network. The proposed method classifies the speech signal into different classes of silence, unvoiced, speech onset, or voiced frame. Based on the results of packet loss prediction and speech classification, the proposed method determines the proper amount and bitrate of redundant speech data (RSD) that are sent with primary speech data (PSD) in order to assist the speech decoder to restore the speech signals of lost packets. Specifically, when a packet is predicted to be lost, the amount and bitrate of the RSD must be increased through a reduction in the bitrate of the PSD. The effectiveness of the proposed method for learning the packet loss pattern and assigning a different speech coding rate is then demonstrated using a support vector machine and adaptive multirate-narrowband, respectively. The results show that as compared with conventional methods that restore lost speech signals, the proposed method remarkably improves the perceived speech quality of an SW-based MCU under various packet loss conditions in an IP network.

Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors

  • Chahnasir, E. Sadeghipour;Zandi, Y.;Shariati, M.;Dehghani, E.;Toghroli, A.;Mohamad, E. Tonnizam;Shariati, A.;Safa, M.;Wakil, K.;Khorami, M.
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.413-424
    • /
    • 2018
  • The factors affecting the shear strength of the angle shear connectors in the steel-concrete composite beams can play an important role to estimate the efficacy of a composite beam. Therefore, the current study has aimed to verify the output of shear capacity of angle shear connector according to the input provided by Support Vector Machine (SVM) coupled with Firefly Algorithm (FFA). SVM parameters have been optimized through the use of FFA, while genetic programming (GP) and artificial neural networks (ANN) have been applied to estimate and predict the SVM-FFA models' results. Following these results, GP and ANN have been applied to develop the prediction accuracy and generalization capability of SVM-FFA. Therefore, SVM-FFA could be performed as a novel model with predictive strategy in the shear capacity estimation of angle shear connectors. According to the results, the Firefly algorithm has produced a generalized performance and be learnt faster than the conventional learning algorithms.

Part-Of-Speech Tagging and the Recognition of the Korean Unknown-words Based on Machine Learning (기계학습에 기반한 한국어 미등록 형태소 인식 및 품사 태깅)

  • Choi, Maeng-Sik;Kim, Hark-Soo
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Unknown morpheme errors in Korean morphological analysis are divided into two types: The one is the errors that a morphological analyzer entirely fails to return any morpheme sequences, and the other is the errors that a morphological analyzer returns incorrect combinations of known morphemes. Most previous unknown morpheme estimation techniques have been focused on only the former errors. This paper proposes a unknown morpheme estimation method which can handle both of the unknown morpheme errors. The proposed method detects Eojeols (Korean spacing units) that may include unknown morpheme errors using SVM (Support Vector Machine). Then, using CRFs (Conditional Random Fields), it segments morphemes from the detected Eojeols and annotates the segmented morphemes with new POS tags. In the experiments, the proposed method outperformed the conventional method based on the longest matching of functional words. Based on the experimental results, we knew that the second type errors should be dealt with in order to increase the performance of Korean morphological analysis.

Improving Hypertext Classification Systems through WordNet-based Feature Abstraction (워드넷 기반 특징 추상화를 통한 웹문서 자동분류시스템의 성능향상)

  • Roh, Jun-Ho;Kim, Han-Joon;Chang, Jae-Young
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.2
    • /
    • pp.95-110
    • /
    • 2013
  • This paper presents a novel feature engineering technique that can improve the conventional machine learning-based text classification systems. The proposed method extends the initial set of features by using hyperlink relationships in order to effectively categorize hypertext web documents. Web documents are connected to each other through hyperlinks, and in many cases hyperlinks exist among highly related documents. Such hyperlink relationships can be used to enhance the quality of features which consist of classification models. The basic idea of the proposed method is to generate a sort of ed concept feature which consists of a few raw feature words; for this, the method computes the semantic similarity between a target document and its neighbor documents by utilizing hierarchical relationships in the WordNet ontology. In developing classification models, the ed concept features are equated with other raw features, and they can play a great role in developing more accurate classification models. Through the extensive experiments with the Web-KB test collection, we prove that the proposed methods outperform the conventional ones.

Event Sentence Extraction for Online Trend Analysis (온라인 동향 분석을 위한 이벤트 문장 추출 방안)

  • Yun, Bo-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.9
    • /
    • pp.9-15
    • /
    • 2012
  • A conventional event sentence extraction research doesn't learn the 3W features in the learning step and applies the rule on whether the 3W feature exists in the extraction step. This paper presents a sentence weight based event sentence extraction method that calculates the weight of the 3W features in the learning step and applies the weight of the 3W features in the extraction step. In the experimental result, we show that top 30% features by the $TF{\times}IDF$ weighting method is good in the feature filtering. In the real estate domain of the public issue, the performance of sentence weight based event sentence extraction method is improved by who and when of 3W features. Moreover, In the real estate domain of the public issue, the sentence weight based event sentence extraction method is better than the other machine learning based extraction method.