• Title/Summary/Keyword: Conventional coil

Search Result 290, Processing Time 0.066 seconds

Improvement of Power Transfer Efficiency Using Negative Impedance Converter for Wireless Power Transfer System with Magnetic Resonant Coupling (부성 임피던스 변환기를 적용한 자기공명 방식 무선전력전송 시스템의 효율 개선)

  • Yoon, Se-Hwa;Kim, Tae-Hyung;Park, Jin-Kwan;Kim, Seong-Tae;Yun, Gi-Ho;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.933-940
    • /
    • 2017
  • A wireless power transfer system with a negative impedance converter(NIC) was designed and tested. The system was investigated to identify the effects of ferrites and conductors. To improve the power transfer efficiency(PTE), the Q-factor of the transmitter was enhanced by the negative resistance generated by the NIC. The NIC was composed of an Op-Amp and resistors. The negative resistance was obtained with respect to a resistor connected in a feedback loop. The dimension of the Tx coil was $250mm{\times}250mm{\times}0.8mm$. The impedance and Q-factor were $31+j1874{\Omega}$ and 60, respectively. The negative resistance was selected to be $30{\Omega}$, and the Q-factor was increased to 900 by reduction of the transmitter resistance, which was about 15 times higher than that of a conventional transmitter. The measured PTE was greatly improved in comparison to that of a conventional system. These results demonstrate that the PTE is enhanced by using the NIC.

Thickness Evaluation of the Aluminum Using Pulsed Eddy Current (펄스 와전류를 이용한 알루미늄 두께 평가)

  • Lee, Jeong-Ki;Suh, Dong-Man;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.15-19
    • /
    • 2005
  • Conventional eddy current testing has been used for the detection of the defect-like fatigue crack in the conductive materials, such as aluminum, which uses a sinusoidal signal with very narrow frequency bandwidth, Whereas, the pulsed eddy current method uses a pulse signal with a broad bandwidth. This can allow multi-frequency eddy current testing, and the penetration depth is greater than that of the conventional eddy current testing. In this work, a pulsed eddy current instrument was developed for evaluating the metal loss. The developed instrument was composed of the pulse generator generating the maximum square pulse voltage of 40V, an amplifier controlled up to 52dB, an A/D converter of 16 bit and the sampling frequency of 20 MHz, and an industrial personal computer operated by the Windows program. A pulsed eddy current probe was designed as a pancake type in which the sensing roil was located inside the driving roil. The output signals of the sensing roil increased rapidly wich the step pulse driving voltage かn off, and the latter part of the sensing coil output voltage decreased exponentially with time. The decrement value of the output signals increased as the thickness of the aluminum test piece increased.

Reconstruction of Stereo MR Angiography Optimized to View Position and Distance using MIP (최대강도투사를 이용한 관찰 위치와 거리에 최적화 된 입체 자기공명 뇌 혈관영상 재구성)

  • Shin, Seok-Hyun;Hwang, Do-Sik
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.67-75
    • /
    • 2012
  • Purpose : We studied enhanced method to view the vessels in the brain using Magnetic Resonance Angiography (MRA). Noticing that Maximum Intensity Projection (MIP) image is often used to evaluate the arteries of the neck and brain, we propose a new method for view brain vessels to stereo image in 3D space with more superior and more correct compared with conventional method. Materials and Methods: We use 3T Siemens Tim Trio MRI scanner with 4 channel head coil and get a 3D MRA brain data by fixing volunteers head and radiating Phase Contrast pulse sequence. MRA brain data is 3D rotated according to the view angle of each eyes. Optimal view angle (projection angle) is determined by the distance between eye and center of the data. Newly acquired MRA data are projected along with the projection line and display only the highest values. Each left and right view MIP image is integrated through anaglyph imaging method and optimal stereoscopic MIP image is acquired. Results: Result image shows that proposed method let enable to view MIP image at any direction of MRA data that is impossible to the conventional method. Moreover, considering disparity and distance from viewer to center of MRA data at spherical coordinates, we can get more realistic stereo image. In conclusion, we can get optimal stereoscopic images according to the position that viewers want to see and distance between viewer and MRA data. Conclusion: Proposed method overcome problems of conventional method that shows only specific projected image (z-axis projection) and give optimal depth information by converting mono MIP image to stereoscopic image considering viewers position. And can display any view of MRA data at spherical coordinates. If the optimization algorithm and parallel processing is applied, it may give useful medical information for diagnosis and treatment planning in real-time.

[ $^1H$ ] MR Spectroscopy of the Normal Human Brains: Comparison between Signa and Echospeed 1.5 T System (정상 뇌의 수소 자기공명분광 소견: 1.5 T Signa와 Echospeed 자기공명영상기기에서의 비교)

  • Kang Young Hye;Lee Yoon Mi;Park Sun Won;Suh Chang Hae;Lim Myung Kwan
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.2
    • /
    • pp.79-85
    • /
    • 2004
  • Purpose : To evaluate the usefulness and reproducibility of $^1H$ MRS in different 1.5 T MR machines with different coils to compare the SNR, scan time and the spectral patterns in different brain regions in normal volunteers. Materials and Methods : Localized $^1H$ MR spectroscopy ($^1H$ MRS) was performed in a total of 10 normal volunteers (age; 20-45 years) with spectral parameters adjusted by the autoprescan routine (PROBE package). In all volunteers, MRS was performed in a three times using conventional MRS (Signa Horizon) with 1 channel coil and upgraded MRS (Echospeed plus with EXCITE) with both 1 channel and 8 channel coil. Using these three different machines and coils, SNRs of the spectra in both phantom and volunteers and (pre)scan time of MRS were compared. Two regions of the human brain (basal ganglia and deep white matter) were examined and relative metabolite ratios (NAA/Cr, Cho/Cr, and mI/Cr ratios) were measured in all volunteers. For all spectra, a STEAM localization sequence with three-pulse CHESS $H_2O$ suppression was used, with the following acquisition parameters: TR=3.0/2.0 sec, TE=30 msec, TM=13.7 msec, SW=2500 Hz, SI=2048 pts, AVG : 64/128, and NEX=2/8 (Signa/Echospeed). Results : The SNR was about over $30\%$ higher in Echospeed machine and time for prescan and scan was almost same in different machines and coils. Reliable spectra were obtained on both MRS systems and there were no significant differences in spectral patterns and relative metabolite ratios in two brain regions (p>0.05). Conclusion : Both conventional and new MRI systems are highly reliable and reproducible for $^1H$ MR spectroscopic examinations in human brains and there are no significant differences in applications for $^1H$ MRS between two different MRI systems.

  • PDF

Analysis of Clinical and Radiological Outcomes in Microsurgical and Endovascular Treatment of Basilar Apex Aneurysms

  • Jin, Sung-Chul;Ahn, Jae-Sung;Kwun, Byung-Duk;Kwon, Do-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.4
    • /
    • pp.224-230
    • /
    • 2009
  • Objective : We aimed to analyze clinical and radiological outcomes retrospectively in patients with basilar apex aneurysms treated by coiling or clipping. Methods : Outcomes of basilar bifurcation aneurysms were assessed retrospectively in 77 consecutive patients (61 women, 16 men), ranging in age from 25 to 79 years (mean, 53.7 years) from 1999 to 2007. Results : Forty-nine patients out of 77 patients (63.6%) presented with subarachnoid hemorrhages of the 49 patients treated with coiling, 27 (55.1 %) showed complete occlusion of the aneurysm sac. Of these, 13 patients (26.5%) developed coil compaction on angiographic or MRI follow-up, with recoiling required in 9 patients (18.4%). Procedural complications of coiling were acute infarction in nine patients and the bleeding of the aneurysms in six patients. The remaining 28 patients underwent microsurgery : twenty-six of these (92.9%) with microsurgery followed up with conventional angiography. Complete occlusion of the aneurysm sac was achieved in 19 patients (73.1%). Operation-related complications of microsurgery were thalamoperforating artery injuries in three patients, retraction venous injury in two, postoperative epidural hemorrhage (EDH) in one, and transient partial or complete occulomotor palsy in 14 patients. Glasgow Outcome Scores (GOS) were 4 or 5 in 21 of 28 (75%) patients treated with microsurgery at discharge, and at 6 month follow-up, 20 of 28 (70.9%) maintained the same GOS. In comparison, GOS of four or 5 was observed in 36 of 49 (73.5%) patients treated with coiling at discharge and at 6 month follow-up, 33 of 49 patients (67.3%) maintained the GOS from discharge. Conclusion : Basilar top aneurysms were still challenging lesions based on our series. Endovascular or microsurgery endowed with its inborn risks and procedural complications for the treatment of basilar apex aneurysms individually. Microsurgery provided better outcome in some specific basilar apex aneurysms. For reaching the most favorable outcome, endovascular modality as well as microsurgery was inevitably considered for each specific basilar apex aneurysm.

Field Loss Analysis and Cooling Analysis of HTS Synchronous Motor (고온초전도 동기모터의 계자손실 해석 및 냉각 해석)

  • Kim, Ki-Chan;Lee, Dae-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.69-74
    • /
    • 2018
  • Large industrial motors require a large area because of the high risk of shutdown accidents and large industrial accidents due to the lowering of the dielectric strength of the armature windings and overheating problems. Therefore, there is a demand for a large-capacity motor that has small size, light weight, and excellent dielectric strength compared with conventional motors. Superconducting motors have advantages of high efficiency and output power, low size, low weight, and improved stability. This results from greatly increasing the magnetic field generation by using superconductive field coils in rotating machines such as generators and motors. It is very important to design and analyze the cooling system to lower the critical temperature of the wires to achieve superconducting performance. In this study, a field loss analysis and low-temperature heat transfer analysis of the cooling system were performed through the conceptual design of a 100-HP high-temperature superconducting synchronous motor. The field loss analysis shows that a uniform pore magnetic flux density appears when high-temperature superconducting wire is used. The low-temperature heat transfer analysis for gaseous neon and liquid neon showed that a flow rate of 1 kg/min of liquid neon is suitable for maintaining low-temperature stability of the high-temperature superconducting wire.

The Utility and Benefits of External Lumbar CSF Drainage after Endovascular Coiling on Aneurysmal Subarachnoid Hemorrhage

  • Kwon, Ou-Young;Kim, Young-Joon;Kim, Young-Jin;Cho, Chun-Sung;Lee, Sang-Koo;Cho, Maeng-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.6
    • /
    • pp.281-287
    • /
    • 2008
  • Objective : Cerebral vasospasm still remains a major cause of the morbidity and mortality, despite the developments in treatment of aneurysmal subarachnoid hemorrhage. The authors measured the utility and benefits of external lumbar cerebrospinal fluid (CSF) drainage to prevent the clinical vasospasm and its sequelae after endovascular coiling on aneurysmal subarachnoid hemorrhage in this randomized study. Methods : Between January 2004 and March 2006, 280 patients with aneurysmal subarachnoid hemorrhage were treated at our institution. Among them, 107 patients met our study criteria. The treatment group consisted of 47 patients who underwent lumbar CSF drainage during vasospasm risk period (about for 14 days after SAH), whereas the control group consisted of 60 patients who received the management according to conventional protocol without lumbar CSF drainage. We created our new modified Fisher grade on the basis of initial brain computed tomography (CT) scan at admission. The authors established five outcome criteria as follows : 1) clinical vasospasm; 2) GOS score at 1-month to 6-month follow-up; 3) shunt procedures for hydrocephalus; 4) the duration of stay in the ICU and total hospital stay; 5) mortality rate. Results : The incidence of clinical vasospasm in the lumbar drain group showed 23.4% compared with 63.3% of individuals in the control group. Moreover, the risk of death in the lumbar drain group showed 2.1 % compared with 15% of individuals in the control group. Within individual modified Fisher grade, there were similar favorable results. Also, lumbar drain group had twice more patients than the control group in good GOS score of 5. However, there were no statistical significances in mean hospital stay and shunt procedures between the two groups. IVH was an important factor for delayed hydrocephalus regardless of lumbar drain. Conclusion : Lumbar CSF drainage remains to playa prominent role to prevent clinical vasospasm and its sequelae after endovascular coiling on aneurysmal subarachnoid hemorrhage. Also, this technique shows favorable effects on numerous neurological outcomes and prognosis. The results of this study warrant clinical trials after endovascular treatment in patients with aneurysmal SAH.

Design of MRI Spectrometer Using 1 Giga-FLOPS DSP (1-GFLOPS DSP를 이용한 자기공명영상 스펙트로미터 설계)

  • 김휴정;고광혁;이상철;정민영;장경섭;이동훈;이흥규;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.12-21
    • /
    • 2003
  • Purpose : In order to overcome limitations in the existing conventional spectrometer, a new spectrometer with advanced functionalities is designed and implemented. Materials and Methods : We designed a spectrometer using the TMS320C6701 DSP capable of 1 giga floating point operations per second (GFLOPS). The spectrometer can generate continuously varying complicate gradient waveforms by real-time calculation, and select image plane interactively. The designed spectrometer is composed of two parts: one is DSP-based digital control part, and the other is analog part generating gradient and RF waveforms, and performing demodulation of the received RF signal. Each recover board can measure 4 channel FID signals simultaneously for parallel imaging, and provides fast reconstruction using the high speed DSP. Results : The developed spectrometer was installed on a 1.5 Tesla whole body MRI system, and performance was tested by various methods. The accurate phase control required in digital modulation and demodulation was tested, and multi-channel acquisition was examined with phase-array coil imaging. Superior image quality is obtained by the developed spectrometer compared to existing commercial spectrometer especially in the fast spin echo images. Conclusion : Interactive control of the selection planes and real-time generation of gradient waveforms are important functions required for advanced imaging such as spiral scan cardiac imaging. Multi-channel acquisition is also highly demanding for parallel imaging. In this paper a spectrometer having such functionalities is designed and developed using the TMS320C6701 DSP having 1 GFLOPS computational power. Accurate phase control was achieved by the digital modulation and demodulation techniques. Superior image qualities are obtained by the developed spectrometer for various imaging techniques including FSE, GE, and angiography compared to those obtained by the existing commercial spectrometer.

  • PDF

Analysis of Efficiency of Suction Board Drain Method by Step Vacuum Pressure (단계석션압 조건에 따른 석션보드드레인 공법의 효율 분석)

  • Kim, Ki-Nyun;Han, Sang-Jae;Kim, Soo-Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.321-329
    • /
    • 2008
  • In this study, a series of column test as a way in order to make up for the weakness point of the conventional acceleration method were conducted to both propose the suction board drain method and grapes the specific improvement character of this method as a result of a sort of plastic drain board and a phase of vacuum pressure conditions. On this occasion, the study focused on computing the effective factors of the fittest Suction board drain method affected by each condition through confirming the settlement generated during the test, the water content reduction and stress increase effect occurred arising from the test, and the ratio of consolidation related to the improvement period. In accordance with the shape of core and that whether the core is attached to the filter(pocket or adhesion), the castle type of adhesion and the column type of pocket are more efficient than the others as a consequence of the test to find out the improvement effect depending on each drainage such as a castle type, coil type, harmonica type, column type of pocket and a castle of the adhesion. In case of the step suction pressure, the shorter the period of $-0.8\;kg/cm^2$ as a final step of the suction pressure is, the better the improvement is. In addition, the correlation between degree of consolidation per each suction pressure level and duration of application was drawn as a curve and the point of inflection on this curve was provided to determine the duration period to maximize the consolidation.

Canine MR Images from 3T Active-Shield MRI System (3T 능동차폐형 자기공명영상 장비로부터 얻어진 개의 자기공명영상)

  • Choe, Bo-Young;Park, Chi-Bong;Kang, Sei-Kwon;Chu, Myoung-Ja;Kim, Euy-Neyng;Lee, Hyoung-Koo;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.113-124
    • /
    • 2001
  • For veterinary imaging diagnosis, we obtained MR images of the canine brain, spine, kidney and pelvis from 3T MRI system which was equipped with the world first 3T active shield magnet. Spin echo (SE) and fast Spin Echo (FSE) images were obtained from the canine brain, spine, kidney and pelvis of normal and sick dogs using a homemade birdcage and transverse electromagnetic (TEM) resonators operating in quadrature and tuned to 128 MHz. In addition, we employed a homemade saddle shaped RF coil. Typical common acquisition parameters were as follows: matrix=512$\times$512, field of view (FOV)=20cm, slice thickness=3 w, number of excitations (NEX)=1. For T1-weighted MR images, we used TR=500 ms, TE=10 or 17.4 ms. For T2-weighted MR images, we used TR=4000 ms, TE=108 ms. Signal to noise ratio (SNR) of 3T system was measured 2.7 times greater than that of prevalent 1.57 system. The high resolution images acquired in this study represent more than a 4-fold increase in in-plane resolution relative to conventional images obtained with a 20 cm field of view and a 5 mm slice thickness. MR images obtained from 3T system revealed numerous small venous structures throughout the image plane and provided reasonable delineation between gray and white matter The present results demonstrate that the MR images from 3T system could provide better diagnostic quality of resolution and sensitivity than those of 1.5T system. The elevated SNR observed in the 3T high field magnetic resonance imaging can be utilized to acquire images with a level of resolution approaching the microscopic structural level under in vivo conditions. These images represent a significant advance in our ability to examine small anatomical features with noninvasive imaging methods. Moreover, MRI technique could begin to apply for veterinary medicine in Korea.

  • PDF