• Title/Summary/Keyword: Conventional HPLC

Search Result 94, Processing Time 0.037 seconds

Development of Analytical Methods for Micro Levels of Naphthalene and TNT in Groundwater by HPLC-FLD and MSD (HPLC-FLD와 MSD를 이용한 지하수 중 나프탈렌 및 TNT의 미량 분석법 개발)

  • Park, Jong-Sung;Oh, Je-Ill;Jeong, Sang-Jo;Choi, Yoon-Dae;Her, Nam-Guk
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.35-44
    • /
    • 2009
  • Naphthalene and TNT (2,4,6-trinitrotoluene) are defined by U.S. EPA as possible carcinogenic compounds known to have detrimental effects on the aquatic ecosystem and human body. There are, however, few researches on methods of analyzing micro-levels of naphthalene and TNT dissolved in groundwater. This study introduces and evaluates the newly developed analytical methods of measuring naphthalene and TNT in groundwater by using HPLC-FLD (Fluorescence detector) and MSD (Mass detector). The MDL, LOQ and salt effect of these methods, respectively, are compared with those of conventional methods which use HPLC-UV. For the analysis of naphthalene, HPLC-FLD was set in the maxima wavelength (Ex: 270 nM, Em: 330 nM) obtained from 3D-Fluorescence to be compared with HPLC-UV in 266 nM wavelength. The MDL ($0.3\;{\mu}g/L$) and LOQ ($2.0\;{\mu}g/L$) of naphthalene by using HPLC-FLD were approximately 80 times lower than those analyzed by HPLC-UV (MDL: $23.3\;{\mu}g/L$, LOQ: $163.1\;{\mu}g/L$). HPLC-MSD were used in comparison with HPLC-UV in 230 and 254 nM wavelength for the analysis of TNT. The MDL ($0.13\;{\mu}g/L$) and LOQ ($0.88\;{\mu}g/L$) of TNT analyzed by using HPLC-MSD were approximately 130 times lower than those obtained by using HPLC-UV in 230 nM (MDL: $16.8\;{\mu}g/L$, LOQ: $117.5\;{\mu}g/L$). The chromatogram of TNT analyzed by using HPLC-UV in 230 nM displayed elevated baseline as the concentration of ${NO_3}^-$ increases beyond 21 mg/L, while the analysis using HPLC-MSD did not demonstrate any change in baseline in presence of ${NO_3}^-$ of 63.7 mg/L which is 3.5 times higher than average concentration in groundwater. In conclusion, HPLC-FLD and HPLC-MSD may be used as suitable methods for the analysis of naphthalene and TNT in groundwater and drinking water. These methods can be applied to the monitoring of naphthalene and TNT concentration in groundwater or drinking water.

Identification of IY81149 and Its Metabolites in the Rat Plasma Using the On-Line HPLC/ESI Mass Spectrometry

  • Myung, Seung-Woon;Min, Hye-Ki;Jin, Chang-Bae;Kim, Myung-Soo;Lee, Seung-Mok;Chung, Gi-Ju;Park, Seong-Jun;Kim, Dong-Yeon;Cho, Hyun-Woo
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.189-193
    • /
    • 1999
  • Reversed-phase high-performance liquid chromatography/mass spectrometry (HPLC/MS) with an eletcrospray ionization (ESI) interface was applied to the identification of metabolites of IY81149 in the rat plasma. Fragments obtained using collision-induced dissociation (CID) in both positive and negative modes were utilized to elucidate the structure of metabolites. The eluent from the conventional HPLC column was split and directly introduced into an ESI-mass spectrometer for the identification of the structures. the CID technique allowed the sensitive identification of sulfonyl-IY81149 and hydroxy-IY81149 from the rat plasma.

  • PDF

Simultaneous Determination of Alkaline Earth Metal Ions by a Conventional High Performance Liquid Chromatographic System

  • Rho, Young-Soo;Choi, Seung-Gi
    • Archives of Pharmacal Research
    • /
    • v.9 no.4
    • /
    • pp.211-214
    • /
    • 1986
  • A simultaneous determination method of alkaline earth metals was attempted with the conventional high performance liquid chromatographic system. Four cations, namely, magnesium, calcium, strontium and barium ion, were injected directly as aqueous solution into an eluent containing copper chloride solution and and were successfully separated and determined on a separating column (Zipax SCX, 4.6 mm i.d. ${\times}25$ cm length, Du Pont, USA) by using a variable wavelength UV detector. The linear calibration curves were obtianed in the range from $1.0{\times}10^{-4}M$ to $5.0{\times}10^{-4}M$ and the correlation coefficient of the calibration curve for each metal of magnesium and calcium in tap water. Alkaline earth metals were determined with the conventional high performance liquid chromatographic system.

  • PDF

Development of New Analysis Method of Cyanobacterial Toxins in Reservoirs (호수에서의 남조류 독성물질의 새로운 분석법 개발)

  • Pyo, Dong Jin;Song, Gi Seop;Yun, Seok Chang;Kim, Beom Cheol;Lee, Dae Un
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.10
    • /
    • pp.741-748
    • /
    • 1994
  • A new HPLC method for the analysis of cyanobacterial toxins, i.e. microcystin was developed using cyano-type prepacked cartridge while the conventional method was to utilize ODS cartridge. The cartridge was washed with 0.5 M acetic acid, then microcystins RR and LR were eluted from the cartridge with 30% acetonitrile. A better degree of quantitation was observed than with a ODS cartridge. Especially, in the case of microcystin LR a great difference in peak area was observed.

  • PDF

Efficient Isolation of Dihydrophaseic acid 3'-O-β-D-Glucopyranoside from Nelumbo nucifera Seeds Using High-performance Countercurrent Chromatography and Reverse-phased High-performance Liquid Chromatography

  • Rho, Taewoong;Yoon, Kee Dong
    • Natural Product Sciences
    • /
    • v.24 no.4
    • /
    • pp.288-292
    • /
    • 2018
  • High-performance countercurrent chromatography (HPCCC) coupled with reversed-phase highperformance liquid chromatography (RP-HPLC) method was developed to isolate dihydrophaseic acid 3'-O-${\beta}$-D-glucopyranoside (DHPAG) from the extract of Nelumbo nucifera seeds. Enriched DHPAG sample (2.3 g) was separated by HPCCC using ethyl acetate/n-butanol/water system (6:4:10, v/v/v, normal-phase mode, flow rate: 4.0 mL/min) to give 23.1 mg of DHPAG with purity of 88.7%. Further preparative RP-HPLC experiment gave pure DHPAG (16.3 mg, purity > 98%). The current study demonstrates that utilization of CCC method maximizes the isolation efficiency compared with that of solid-based conventional column chromatography.

Determination of Trace Amounts of Formaldehyde in Water Using High Performance Liquid Chromatography and Acetylacetone as a Derivative Reagent (아세틸아세톤 유도체화 시약과 HPLC를 이용한 미량 포름알데하이드 수질분석)

  • Lee, Ki-Chang;Park, Jae-Hyung;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • A simple analytical method to quantify formaldehyde in water at lower levels (${\mu}g/L$) was developed using a high performance liquid chromatography (HPLC) and acetylacetone as a derivative reagent. Unlike conventional methods, no extraction and/or concentration were required. The derivative reagent was added into samples and reacted for 30 minutes at $80^{\circ}C$ prior to the analysis of formaldehyde using HPLC. The method detection limit and the limit of quantification for this method were 1.6 and $5.0{\mu}g/L$, respectively. This method also achieved high precision (0.6-3.0%) and accuracy (91.6-106.3%). The recovery rates for various environmental samples ranged from 92.0 to 115.2%.

Phenanthrene Derivatives, 3,5-Dimethoxyphenanthrene-2,7-diol and Batatasin-I, as Non-Polar Standard Marker Compounds for Dioscorea Rhizoma

  • Yoon, Kee-Dong;Yang, Min-Hye;Nam, Sang-Il;Park, Ju-Hyun;Kim, Young-Choong;Kim, Jin-Woong
    • Natural Product Sciences
    • /
    • v.13 no.4
    • /
    • pp.378-383
    • /
    • 2007
  • Phenathrene derivatives, such as batatasins, are well-known constituents in Dioscorea Rhizoma. Although phenanthrenes have been reported as representative compounds in this plant, standard markers for quality control have been focused on the polar constituents (saponins and purine derivatives). Herein, simple, rapid and reliable HPLC method was developed to determine 3,5-dimethoxyphenanthrene-2,7-diol (DMP) and batatasin-I (BA-I) as non-polar standard maker compounds of Dioscorea Rhizoma. DMP and BA-I were analyzed under optimized HPLC conditions [column: Columbus $5{\mu}$ C18 100A ($30{\times}4.6mm$ i.d., $5{\mu}m$; mobile phase: $H_2O$ with 0.025% $CH_3COOH$ (v/v) for solvent A and $CH_3CN$ with 0.025% $CH_3COOH$ (v/v) for solvent B, gradient elution; flow rate: 2 mL/min; detection: 260 nm), and each experiment was finished within 13 min. Good linearity was achieved in the range from 0.5 to $10.0{\mu}g/mL$ for each compound, and intra- and inter-day precision were in the acceptable levels. The recovery test were performed with three different Dioscorea Rhizoma samples (D. opposita, D. batatas and D. japonica), and showed its accuracy values in the range of 97.2 - 102.8% for three different concentrations of DMP and BA-I. The content levels of DMP and BA-I were ranged under 0.0020%. These results demonstrated that amounts of DMP and BA-I are easily determined with conventional HPLC-UV-DAD method although the content levels were lower than those of saponins and allantoin in Dioscorea Rhizoma. This HPLC method could be used for quality control of various Dioscorea preparations.

Facile [11C]PIB Synthesis Using an On-cartridge Methylation and Purification Showed Higher Specific Activity than Conventional Method Using Loop and High Performance Liquid Chromatography Purification (Loop와 HPLC Purification 방법보다 더 높은 비방사능을 보여주는 카트리지 Methylation과 Purification을 이용한 손쉬운 [ 11C]PIB 합성)

  • Lee, Yong-Seok;Cho, Yong-Hyun;Lee, Hong-Jae;Lee, Yun-Sang;Jeong, Jae Min
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.2
    • /
    • pp.67-73
    • /
    • 2018
  • $[^{11}C]PIB$ synthesis has been performed by a loop-methylation and HPLC purification in our lab. However, this method is time-consuming and requires complicated systems. Thus, we developed an on-cartridge method which simplified the synthetic procedure and reduced time greatly by removing HPLC purification step. We compared 6 different cartridges and evaluated the $[^{11}C]PIB$ production yields and specific activities. $[^{11}C]MeOTf$ was synthesized by using TRACERlab FXC Pro and was transferred into the cartridge by blowing with helium gas for 3 min. To remove byproducts and impurities, cartridges were washed out by 20 mL of 30% EtOH in 0.5 M $NaH_2PO_4$ solution (pH 5.1) and 10 mL of distilled water. And then, $[^{11}C]PIB$ was eluted by 5 mL of 30% EtOH in 0.5 M $NaH_2PO_4$ into the collecting vial containing 10 mL saline. Among the 6 cartridges, only tC18 environmental cartridge could remove impurities and byproducts from $[^{11}C]PIB$ completely and showed higher specific activity than traditional HPLC purification method. This method took only 8 ~ 9 min from methylation to formulation. For the tC18 environmental cartridge and conventional HPLC loop methods, the radiochemical yields were $12.3{\pm}2.2%$ and $13.9{\pm}4.4%$, respectively, and the molar activities were $420.6{\pm}20.4GBq/{\mu}mol$ (n=3) and $78.7{\pm}39.7GBq/{\mu}mol$ (n=41), respectively. We successfully developed a facile on-cartridge methylation method for $[^{11}C]PIB$ synthesis which enabled the procedure more simple and rapid, and showed higher molar radio-activity than HPLC purification method.

The Difference of Ginsenoside Compositions According to the Conditions of Extraction and Fractionation of Crude Ginseng Saponins (추출 및 분획조건에 따른 인삼 조사포닌 중 ginsenoside 조성 차이)

  • Shin, Ji-Young;Choi, Eon-Ho;Wee, Jae-Joon
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.282-287
    • /
    • 2001
  • This study was carried out to investigate the difference of ginsenoside compositions in crude ginseng saponins prepared by five different methods including three new methods. Two known methods are hot methanol(MeOH) extraction/n-butanol(n-BuOH) fractionation and hot MeOH extraction/Diaion HP-20 adsorption/MeOH elution. Three new methods are hot MeOH extraction/cation AG 50W $absorption/H_2O$ elution/n-BuOH extraction, cool MeOH extraction/Diaion HP-20 adsorption/MeOH elution and direct extraction with ethyl acetate(EtOAc)/n-BuOH. Analysis of ginsenoside composition in the crude saponins by conventional HPLC/RI(Refractive Index) did not show great difference between methods except EtOAc/n-BuOH method. However, HPLC/ELSD (evaporative light scattering detector) employing gradient mobile phase afforded fine resolution of ginsenoside Rf, $Rg_1$ and $Rh_1$, and great difference of ginsenoside compositions between methods. LC/MS revealed that large amount of prosapogenins were produced during the pass through the cation exchange (AG 50W) column being strongly acidic. Six major ginsenosides such as $Rb_1,w;Rb_2,$ Rc, Rd, Re and $Rg_1$, 5 prosapogenins and one chikusetsusaponin were identified by LC/MS. A newly established HPLC method employing ODS column and gradient mobile phase of $KH_2PO_4/CH_3CN$ revealed that malonyl ginsenosides were detected only in the crude saponin obtained from cool MeOH extraction.

  • PDF

Capillary Electrophoretic Method for the Determination of (+)-Catechin, (-)-Epicatechin in Grape Seed Ethanol Extract (포도종실 에탄올 추출물에 함유된 (+)-카테킨, (-)-에피카테킨의 모세관 전기영동법에 의한 분석)

  • Choi, One-Kyun;Chung, Yang-Seop;Chung, Ha-Yull
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.513-518
    • /
    • 2005
  • Capillary electrophoresis (CE) method was developed to determine (+)-catechin and (-)-epicatechin contents in grape seed ethanol extract. CE separation was achieved using 100 mM phosphate and borate buffer at pH 6.0 as background electrolyte and fused silica capillary with 50 microns x 375 microns O.D. (effective length 20.0cm) maintained at $25^{\circ}C$. The applied voltage was 10kV, and detection was performed by DAD at 210 nm, Two catechins were well separated within 6 min with repeatability of <0.8% RSD for migration time and <2.0% RSD for peak area, and correlation coefficients higher than 0.994 were obtained from 58.0 to 174.0 mg/L with detection limit of 0.035 mg/L. Separated compounds were successfully determined. CE method was easy to handle and showed good reproducibility. CE method was compared with conventional coloring and HPLC methods, and main advantages of CE method were low amount of sample required, simple pre-sample treatment, good recovery rate, and short analysis time.