• Title/Summary/Keyword: Conventional Design

Search Result 7,819, Processing Time 0.034 seconds

Flexural and shear behavior of large diameter PHC pile reinforced by rebar and infilled concrete

  • Bang, Jin-Wook;Lee, Bang-Yeon;Kim, Yun-Yong
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.75-81
    • /
    • 2020
  • The purpose of this paper is to provide an experimental and analytical study on the reinforced large diameter pretensioned high strength concrete (R-LDPHC) pile. R-LDPHC pile was reinforced with infilled concrete, longitudinal, and transverse rebar to increase the flexural and shear strength of conventional large diameter PHC (LDPHC) pile without changing dimension of the pile. To evaluate the shear and flexural strength enhancement effects of R-LDPHC piles compared with conventional LDPHC pile, a two-point loading tests were conducted under simple supported conditions. Nonlinear analysis on the basis of the conventional layered sectional approach was also performed to evaluate effects of infilled concrete and longitudinal rebar on the flexural strength of conventional LDPHC pile. Moreover, ultimate strength design method was adopted to estimate the effect of transverse rebar and infilled concrete on the shear strength of a pile. The analytical results were compared with the results of the bending and shear test. Test results showed that the flexural strength and shear strength of R-LDPHC pile were increased by 2.3 times and 3.3 times compared to those of the conventional LDPHC pile, respectively. From the analytical study, it was found that the flexural strength and shear strength of R-LDPHC pile can be predicted by the analytical method by considering rebar and infilled concrete effects, and the average difference of flexural strength between experimental results and calculated result was 10.5% at the ultimate state.

Design of Tilting Train Pantograph for Conventional Rail Speed-Up (기존선고속화를 위한 틸팅차량용 판토그라프 설계)

  • Lee, Su-Gil;Han, Seong-Ho;You, Won-Hee;Kyoung, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1295-1297
    • /
    • 2002
  • This paper describes the pantograph design result for tilting train at conventional railway. EMU(Electrical Multiple Unit) Tilting Train is important tilting pantograph. Tilting train pantograh should be operated to commercial service speed 180Km/h of 200Km/h at KNR upgrade railroad. This specification pantograh tested using catenary-panto dynamic simulation

  • PDF

Design of SRM and Controller for Hydraulic Pump (유압유니트용 SRM 및 제어기 설계)

  • Kim, Bong-Chul;Kim, Tai-Hyung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.113-115
    • /
    • 2004
  • This paper presents a design and characteristics analysis of an SRM drive for a hydraulic pump application. A hydraulic pump is used AC Induction motor in conventional applications. The suggested drive system supplies required pressure on-line for energy saving, while conventional one holds the pressure during stand by period. The prototype motor is designed and tested through simulation and experiments.

  • PDF

A study on Improved Genetic Algorithm to solve nonlinear optimization problems (비선형 최적화문제의 해결을 위한 개선된 유전알고리즘의 연구)

  • 우병훈;하정진
    • Korean Management Science Review
    • /
    • v.13 no.1
    • /
    • pp.97-109
    • /
    • 1996
  • Genetic Algorithms have been successfully applied to various problems (for example, engineering design problems with a mix of continuous, integer and discrete design variables) that could not have been readily solved with traditional computational techniques. But, several problems for which conventional Genetic Algorithms are ill defined are premature convergence of solution and application of exterior penalty function. Therefore, we developed an Improved Genetic Algorithms (IGAs) to solve above two problems. As a case study, IGAs is applied to several nonlinear optimization problems and it is proved that this algorithm is very useful and efficient in comparison with traditional methods and conventional Genetic Algorithm.

  • PDF

Analysis and Design considerations of LLC Resonant Converter Including Parasitic Components

  • Lee, Byoung-Hee;Kim, Chong-Eun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.511-513
    • /
    • 2008
  • Since conventional analysis of LLC resonant converter has a limit to explain a practical operation of LLC Resonant Converter, LLC resonant converter designed by conventional analysis can not regulate output voltage in several conditions. To solve this problem, analysis and design of LLC resonant converter including parasitic components is proposed. Experimental results are shown to confirm the feasibility of the proposed method.

  • PDF

Process Design of Automobile Steering Yoke with burring (버링 가공을 이용한 자동차 요크 제품의 가공 공정 설계)

  • 김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.151-154
    • /
    • 2000
  • The yoke is used for joining the mechanical element of a spider and shaft in the steering system of automobiles. Conventional yoke forming processes are too complicated such as 4 stages bending and forming. The weight of yoke is also heavy than other components. New process is necessary to reduce the product weight to improve the strength and to reduce the costs. Process designed to reduce number of forming stages and to reduce its weight. To check the strength the stress analyses are performed between conventional yoke and developed one.

  • PDF

Optimization of V-groove Arc Welding Process Using Genetic Algorithm (유전 알고리즘을 이용한 V그루브 아크 용접 공정변수 최적화)

  • 안홍락;이세헌;안승호;강문진
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.172-175
    • /
    • 2003
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. According to the conventional full factorial design, in order to find the optimal welding conditions, 16,384 experiments must be performed. The genetic algorithm however, found the near optimal welding conditions from less than 60 experiments.

  • PDF

Design of An Autobalancing System for Hemodiafiltration (인공신장투석여과기용 자동밸런스 장치의 설계)

  • 이병채;이효철;이명호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.47-55
    • /
    • 1993
  • This paper is to design an autobalancing system based-on microprocessor for hemodiafiltration (HDF) system. The proposed system consist of motor control part, thermostatic control part, alarm system and electronic scale which ar automatically controlled by microprocessor. Conventional hemodialysis system can not remove medium molecular articles but hemodialysis system with the proposed system can remove and infuse substitute to the patient. This system can be easily interfaced with any other conventional HD system. The results obtained from performance evaluation of the proposed system are suitable for clinical supporting system.

  • PDF

Design of Fuzzy PID Controllers Using Steady-state Genetic Algorithms

  • 권영섭;샤요웬동
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.411-419
    • /
    • 1998
  • In this paper the steady-state genetic algorithm is applied for the optimal design of fuzzy PID controllers. Basically the structure of the discussed fuzzy PID controller is extended from the conventional fuzzy PI and PD controllers where only a two-dimensional rule base of the fuzzy PID controller are designed simultaneously. Simulations results shows the superior performance of this optimal designed fuzzy PID controllers to the optimal designed conventional fuzzy PI and PD controllers.

  • PDF

A Study on teh Improvement of Resonant Inverter (공진형 인버터의 개성에 관한 연구)

  • Sul, Seung-Ki
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.7
    • /
    • pp.680-691
    • /
    • 1990
  • In this paper the conventional resonant inverters are compared and a novel parallel resonant dc pulse inverter for high performance motor drive system is proposed. The design method and related equations for the novel resonant inverter are derived. Also, a current controller for the resonant inverter is proposed and compared with PI current controller of the conventional PWM inverter by analog simulation. The novel resonant inverter and the current controller are implemented to verify the suggested design principles. The analog simulation and the experimental results shown the satisfactory operation of the proposed inverter and the controller.

  • PDF