• Title/Summary/Keyword: Conventional Visual Method

Search Result 383, Processing Time 0.027 seconds

Development of an edge-based point correlation algorithm for fast and stable visual inspection system (고속 검사자동화를 위한 에지기반 점 상관 알고리즘의 개발)

  • 강동중;노태정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.640-646
    • /
    • 2003
  • We presents an edge-based point correlation algorithm for fast and stable visual inspection system. Conventional algorithms based on NGC(normalized gray-level correlation) have to overcome some difficulties in applying automated inspection systems to real factory environment. First of all, NGC algorithms involve highly complex computation and thus require high performance hardware for realtime process. In addition, lighting condition in realistic factory environments is not stable and therefore intensity variation from uncontrolled lights gives many troubles for applying NGC directly as pattern matching algorithm. We propose an algorithm to solve these problems, using thinned and binarized edge data, which are obtained from the original image. A point correlation algorithm with the thinned edges is introduced with image pyramid technique to reduce the computational complexity. Matching edges instead of using original gray-level image pixels overcomes problems in NGC method and pyramid of edges also provides fast and stable processing. All proposed methods are proved by the experiments using real images.

Real-Time Control of a SCARA Robot by Visual Servoing with the Stereo Vision

  • S. H. Han;Lee, M. H.;K. Son;Lee, M. C.;Park, J. W.;Lee, J. M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.238-243
    • /
    • 1998
  • This paper presents a new approach to visual servoing with the stereo vision. In order to control the position and orientation of a robot with respect to an object, a new technique is proposed using a binocular stereo vision. The stereo vision enables us to calculate an exact image Jacobian not only at around a desired location but also at the other locations. The suggested technique can guide a robot manipulator to the desired location without giving such priori knowledge as the relative distance to the desired location or the model of an object even if the initial positioning error is large. This paper describes a model of stereo vision and how to generate feedback commands. The performance of the proposed visual servoing system is illustrated by the simulation and experimental results and compared with the case of conventional method fur a SCARA robot.

  • PDF

A Quantitative Evaluation of ${\Delta}K_{eff}$ Estimation Methods Based on Random Loading Crack Growth Data. (랜덤하중하의 피로균열진전 데이터를 이용한 ${\Delta}K_{eff}$ 평가법의 정량적 평가)

  • Koo, Ja-Suk;Song, Ji-Ho;Kang, Jae-Youn
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.208-213
    • /
    • 2004
  • Methods for estimation of the effective stress intensity factor range (${\Delta}K_{eff}$) are evaluated for narrow and wide band random loading crack growth test data of 2024-T351 aluminum alloy. Three methods of determining $K_{op}$, visual measurement, ASTM offset compliance method, and the neural network method proposed by Kang and Song, and three methods of estimating ${\Delta}K_{eff}$, conventional, the 2/PI0 and 2/PI methods proposed by Donald and Paris, are compared in a quantitative manner by using the results of fatigue crack growth life prediction under random loading. For all $K_{op}$ determination methods discussed, the 2/PI0 and 2/PI methods of estimating ${\Delta}K_{eff}$ provide better results than conventional method for narrow and wide band random loading data.

  • PDF

Three Dimensional Volume Reconstruction of Polyhedral Objects Using X-ray Stereo Images

  • Roh, Young-Jun;Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.28.2-28
    • /
    • 2001
  • Three dimensional shape measurement techniques are widely needed in industries for product quality monitoring and control. X-ray imaging method is a promising technology to achieve three-dimensional Information, both the surface and inner structure of an object, since it can overcome the limitations of conventional visual or optical methods such as an occlusion problem or surface reflection properties. In this paper, we propose three dimensional volume reconstruction method based on x-ray stereo imaging technology. Here, the stereo images of an object from two different views are taken by changing the object pose rather than moving imaging plane as in conventional stereo vision method. We propose a series of image processing techniques to extract the features efficiently from x-ray images, where the occluded features in case of normal camera vision could be found ...

  • PDF

An efficient frame rate up-conversion method with adaptive motion estimation and compensation for mobile projection displays

  • Lee, Jong-Ok;Jang, Seul-Ki;Chen, Qiao Song;Kim, Choon-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.810-813
    • /
    • 2007
  • Recently, mobile video communication is getting more and more popular. Visual quality and computational complexity are primary factors affecting performance of video communication. Frame rate up-conversion (FRC) is necessary for achieving high visual quality in mobile projection displays. In this paper, a FRC method using motion compensation based on block matching algorithm (BMA) with adaptive block size is proposed. In order to improve the accuracy of the estimated motion vectors, the motion vector refinement technique is proposed. Experiment results indicate that the proposed technique exhibits better performance with lower hardware complexity compared to the conventional methods.

  • PDF

Motion-Compensated Frame Interpolation Using a Parabolic Motion Model and Adaptive Motion Vector Selection

  • Choi, Kang-Sun;Hwang, Min-Chul
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.295-298
    • /
    • 2011
  • We propose a motion-compensated frame interpolation method in which an accurate backward/forward motion vector pair (MVP) is estimated based on a parabolic motion model. A reliability measure for an MVP is also proposed to select the most reliable MVP for each interpolated block. The possibility of deformation of bidirectional corresponding blocks is estimated from the selected MVP. Then, each interpolated block is produced by combining corresponding blocks with the weights based on the possibility of deformation. Experimental results show that the proposed method improves PSNR performance by up to 2.8 dB as compared to conventional methods and achieves higher visual quality without annoying blockiness artifacts.

Zerotree coding with local adaptive threshold (국부 적응 문턱값을 가지는 제로트리 부호화)

  • 엄일규;김유신;김재호
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.112-119
    • /
    • 1997
  • Zerotreeimage coding is known as a simple and effective image comprssion algorithm. It has the property that the compression is generated in order of improtance. Conventionally, a fixed threshold is applied to the entire wavelet coefficients regardless of frequency and local features of an image. In this paper, we propose a new zerotree coding scheme with adaptive threshold. The adaptive threshold is determined by human visual characteristics. It is shown that the image quality of the proposed method is better than that of the conventional method.

  • PDF

Perceptual Quality-based Video Coding with Foveated Contrast Sensitivity (Foveated Contrast Sensitivity를 이용한 인지품질 기반 비디오 코딩)

  • Ryu, Jiwoo;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.19 no.4
    • /
    • pp.468-477
    • /
    • 2014
  • This paper proposes a novel perceptual quality-based (PQ-based) video coding method with foveated contrast sensitivity (FCS). Conventional methods on PQ-based video coding with FCS achieve minimum loss on perceptual quality of compressed video by exploiting the property of human visual system (HVS), that is, its sensitivity differs by the spatial frequency of visual stimuli. On the other hand, PQ-based video coding with foveated masking (FM) exploits the difference of the sensitivity of the HVS between the central vision and the peripheral vision. In this study, a novel FCS model is proposed which considers both the conventional DCT-based JND model and the FM model. Psychological study is conducted to construct the proposed FCS model, and the proposed model is applied to PQ-based video coding algorithm implemented on HM10.0 reference software. Experimental results show that the proposed method decreases bitrate by the average of 10% without loss on the perceptual quality.

Development of Measurement Method and Contents for Unilateral Neglect using Eye-tracking Technique (시선추적기법을 적용한 편측무시 측정 방법 및 개선 콘텐츠 개발)

  • Choi, Junghee;Shin, Sung-Wook;Moon, Ho-Sang;Goo, Sejin;Chung, Sung-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.187-195
    • /
    • 2018
  • In this study, using real-time gaze tracking and head tracking method, we intended to quantitatively evaluate the deviation between the patient's head and gaze direction while minimizing inspection errors due to apraxia of conventional paper-based examination respectively. As a result, we developed a software that can quantitatively measure gaze and head movement information, and computerized the line bisection and star cancelation test, which are generally used as conventional paper test. In addition, for the rehabilitation training, contents corresponding to the visual technology of Warren's visual hierarchical model lower level are implemented and can be performed repetitively and independently. This allows the patient to actively participate in rehabilitation and quantitatively compare the degree of improvement.

Utilizing Context of Object Regions for Robust Visual Tracking

  • Janghoon Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.79-86
    • /
    • 2024
  • In this paper, a novel visual tracking method which can utilize the context of object regions is presented. Conventional methods have the inherent problem of treating all candidate regions independently, where the tracker could not successfully discriminate regions with similar appearances. This was due to lack of contextual modeling in a given scene, where all candidate object regions should be taken into consideration when choosing a single region. The goal of the proposed method is to encourage feature exchange between candidate regions to improve the discriminability between similar regions. It improves upon conventional methods that only consider a single region, and is implemented by employing the MLP-Mixer model for enhanced feature exchange between regions. By implementing channel-wise, inter-region interaction operation between candidate features, contextual information of regions can be embedded into the individual feature representations. To evaluate the performance of the proposed tracker, the large-scale LaSOT dataset is used, and the experimental results show a competitive AUC performance of 0.560 while running at a real-time speed of 65 fps.