• Title/Summary/Keyword: Convection-diffusion

Search Result 227, Processing Time 0.028 seconds

A Numerical Analysis for Two-phase Turbulent Flow in the Neutral Atmosphere (중립 대기 상태에서 이상 난류유동에 관한 수치적 연구)

  • Kang, Seung-Kyu;Yoon, Joon-Yong;Lee, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.772-778
    • /
    • 2002
  • A numerical analysis of turbulent gas-particle two-phase flow is performed in conjunction with the experiments of Fackrell & Robins and Raupach & Legg that considered ground-level source and/or elevated source flat plate flow. K-$\omega$ turbulence model is used in order to analyze fully turbulent flow field and the concentration equation with settling velocity is adopted for the concentration field. The model of Einstein and Chien is applied that couples the velocity field and the concentration field. Turbulent eddy viscosity is re-evaluated in this model. The present numerical results have good agreement between the simulation and the experimental data for the mean flow velocities and particle concentrations. While the previous study shows about 27% error in the vicinity of the source of particle concentration, the .present study allows about 14% error. A new turbulent gas-particle flow model developed by this study is able to cut down error by 13% at a near source.

Corrosion of Refractory in Glass Melts for Plasma Display Panel Substrate (Plasma Display Panel용 기판 유리용융체의 내화물 침식)

  • Kim, Ki-Dong;Jung, Hyun-Su;Kim, Hyo-Kwang
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.1 s.296
    • /
    • pp.65-69
    • /
    • 2007
  • For self-developed alkali-alkaline earth-silicate and commercial glass melts for plasma display panel substrate, the corrosion behavior of fused casting refractory consisting of $Al_2O_3-ZrO_2-SiO_2$ was examined at the temperature corresponding to $10^2\;dPa{\cdot}s$ of melt viscosity by static finger methode. The corroded refractory specimens showed a typical concave shape due to interfacial convection of melts at their flux line. However, the corrosion thickness by commercial glass melts was $6\sim10$ times comparing to that by the self?developed melts. From the view point of the glass composition and the role of alkaline earth in glass network, it was discussed the effect of alkali/alkaline earth diffusion and temperature on the refractory corrosion.

Effect of applied magnetic fields on oxygen transport in magnetic Czochralski growth of silicon (Czochralski 방법에 의한 실리콘 단결정 성장에서 자장에 의한 산소의 전달 현상 제어)

  • Chang Nyung Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.210-222
    • /
    • 1994
  • The characteristics of flows, temperatures, and concentrations of oxygen are numerically studies in the Czochralski furnace with a uniform axial magnetic field. Important governing factors to the flow fields include buoyancy, thermocapillarity, centrifugal force, magnetic force, diffusion and segregation coefficients of the oxygen, evaporation coefficient in the form of SiO, and ablation rate of crucible wall. With an assumption that the flow fields have reached the steady state, which means that two velocity components in the meridional plane and circumferential velocity, temperatures, electric current intensity become non-transient, then unsteady concentration field of oxygen has been analyzed with an initially uniform oxygen concentration. Oxygen transports due to convection and diffusion in the Czochralski flow field and oxygen flux through the growing crystal surface has been investigated.

  • PDF

Estimation of Pollutants Exhausted :From vehicles for Tunnel ventilation Control (터널환기제어를 위한 차종별 오염물 배출량 추정)

  • Hong, Daehie;Kim, Woo-Dong;Kim, Tae-Hyung;Min, Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.110-115
    • /
    • 2002
  • The tunnels built in recent years are equipped with traffic counters and pollution sensors (mostly, CO and Vl sensors). Utilizing these built-in sensors, it is possible to develop an algorithm to estimate the amount of pollutants exhausted from the each class of cars passing through the tunnel. These estimated data can be effectively utilized not only for ventilation control but also for designing ventilation facilities. The diffusion of pollutants in a tunnel can be described with one-dimensional diffusion-convection equation. This equation is approximated with interpolation functions and weighted residual method converting to adequate form for standard state estimate algorithms. With this converted equations, a least square optimization based algorithm is developed, whose outputs are the estimated amounts of pollutants emitted from each class of cars. In order to verify the feasibility of the developed algorithms, simulations are performed with the real data acquisitioned from the Tunnae tunnel located in Young-Dong highway in Korea.

Kinetics and Mechanism of Corrosion of ρ-alumina Bonded Alumina Castable by Molten Slag (ρ-알루미나결합 알루미나 캐스터블의 용융슬래그에 의한 침식기구)

  • 천승호;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.1015-1020
    • /
    • 2003
  • The Corrosion behavior of the matrix of the $\rho$-alumina bonded alumina vibrated castable was, on the basis of Jabsen's theory, elucidated by use of the Kingery's reaction mechanism. Corrosion of the matrix during induction period was controlled by the molecular diffusion. The temperature dependence of activation process is well established by the Arrhenius plots. The difference of Ca concentration between slag and interface is 23.2%, which causes a driving force of the materials transfer. The extent of the corrosion of the matrix is more deeper than that of the sintered mullite, but the corrosion mechanism can be well employed as the reaction mechanism proposed by the Kingery. The life time of the castable may be well estimated by the corrosion mechanism of Kingery.

Characteristics of Particle Deposition onto Cleanroom Wall Panel for Varying Particle Charging Rates (입자하전량에 따른 클린룸 수직벽체로의 입자침착 특성)

  • Kim, Jong-Jun;Noh, Kwang-Chul;Sung, Sang-Chul;Baek, Sun-Ho;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.725-730
    • /
    • 2008
  • In this study, we found out charged particle's deposition characteristic by experiments of $0.5{\mu}m$, $1.0{\mu}m$, $3.0{\mu}m$ size particle's concentration decay. We carried out the experiments on charged particle deposition onto the vertical cleanroom wall panel and some other fundamental experiments. The particle deposition mechanism is consist of sedimentation, convection, diffusion, thermophoresis, electrostatic and so on. Particle size determines mainly working deposition mechanism. The charged particle is made with corona discharge that are constituted field charging and diffusion charging. In addition, this combinational mechanism is called combined charging. The type of corona discharge determines quantity of particle electrical charge. In conclusion, we assumed that quantity of particle electrical charge accelerations deposition velocity onto the vertical cleanroom wall panel and proved it. And we figured out particle's deposition characteristic through compared between our experiment's results.

  • PDF

GPU-accelerated Lattice Boltzmann Simulation for the Prediction of Oil Slick Movement in Ocean Environment (GPU 가속 기술을 이용한 격자 볼츠만법 기반 원유 확산 과정 시뮬레이션)

  • Ha, Sol;Ku, Namkug;Roh, Myung-Il
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.6
    • /
    • pp.399-406
    • /
    • 2013
  • This paper describes a new simulation technique for advection-diffusion phenomena over the sea surface using the lattice Boltzmann method (LBM), capable of predicting oil dispersion from tankers. The LBM is used to solve the pollutant transport problem within the framework of the ocean environment. The sea space is represented by the lattices, where each lattice has the information on oil transportation. Since dispersed oils (i.e., oil droplets) at sea are transported by convection due to waves, buoyancy, and turbulent diffusion, the conservation of mass and many physical oil transport rules were used in the prediction model. Since the LBM is modeled using the uniform lattices and simple rules, it can be easily accelerated by the parallel mechanism, for example, GPU-accelerated method. The proposed model using the LBM is used to simulate a simple pollution event with the oil pollutants of 10,000 kL. The simulation results indicate that the LBM method accelerated with the GPU is 6 times faster than that without the GPU.

Analysis on particle deposition onto a heated, horizontal free-standing wafer with electrostatic effect (정전효과가 있는 가열 수평웨이퍼로의 입자침착에 관한 해석)

  • Yoo, Kyung-Hoon;Oh, Myung-Do;Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1284-1293
    • /
    • 1997
  • The electrostatic effect on particle deposition onto a heated, Horizontal free-standing wafer surface was investigated numerically. The deposition mechanisms considered were convection, Brownian and turbulent diffusion, sedimentation, thermophoresis and electrostatic force. The electric charge on particle needed to calculate the electrostatic migration velocity induced by the local electric field was assumed to be the Boltzmann equilibrium charge. The electrostatic forces acted upon the particle included the Coulombic, image, dielectrophoretic and dipole-dipole forces based on the assumption that the particle and wafer surface are conducting. The electric potential distribution needed to calculate the local electric field around the wafer was calculated from the Laplace equation. The averaged and local deposition velocities were obtained for a temperature difference of 0-10 K and an applied voltage of 0-1000 v.The numerical results were then compared with those of the present suggested approximate model and the available experimental data. The comparison showed relatively good agreement between them.

Electro-Thermal Model Based-Temperature Estimation Method of Lithium-Ion Battery for Fuel-Cell and Battery Hybrid Railroad Propulsion System (하이브리드 철도차량 시스템의 전기-열 모델 기반 리튬이온 배터리 온도 추정 방안)

  • Park, Seongyun;Kim, Jaeyoung;Kim, Jonghoon;Ryu, Joonhyoung;Cho, Inho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.357-363
    • /
    • 2021
  • Eco-friendly hybrid railroad propulsion system with fuel-cell and battery was suggested to reduce carbon dioxide gas and replace retired diesel railroads. Lithium-ion battery with high energy/power density and long lifetime is selected as the energy source at the battery side due to its excellent performance. However, the performance of lithium-ion batteries was affected by temperature, current rate, and operating condition. Temperature is known to be the most influential factor in changing battery parameters. In addition, appropriate thermal management is required to ensure the safe and effective operation of lithium-ion battery. Electro-thermal coupled model with varying parameter depends on temperature, and state-of-charge (SOC) is suggested to estimate battery temperature. The electric-thermal coupled model contains diffusion current using parameter identification by adaptive control algorithm when considering thermal diffusion effect. An experiment under forced convection was conducted using cylindrical cell and 18 parallel-connected battery module to demonstrate the method.

A Study on Isothermal Adsorption of VOCs onto Gypsum Mortar Incorporating Oyster Shell (굴패각 모르타르에의 휘발성 유기화합물 흡착에 대한 연구)

  • Kwon, Sung-Hyun;Cho, Daechul
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.134-139
    • /
    • 2013
  • VOCs such as formaldehyde and benzene in a control chamber were adsorbed onto gypsum incorporating oyster shell powder, which was solidified and dried. VOC was first exposed in air and then gypsum mortar was placed in the chamber for 180 min for adsorption. The mortar was prepared with 0, 10, 30, and 50% of oyster shell powder. Two initial concentrations of VOCs including formaldehyde were $27.7{\sim}28.5mg/m^3$ or $175{\sim}150{\mu}g/m^3$. We found out that the initial concentrations did not seem to make any difference in adsorption performance but higher oyster content strongly led to higher adsorption. We used a convection-diffusion-adsorption model to compare the experiment. The model which considers diffusion coefficients of adsorbates and affinity of the adsorbents well represented the experimental data with a fair agreement.