• Title/Summary/Keyword: Convection reflow oven

Search Result 3, Processing Time 0.016 seconds

Analysis on the Thermal Response of Electronic Assemblies during Forced Convection-Infrared Reflow Soldering (강제대류-적외선 리플로 솔더링시 전자조립품의 열적반응 분석)

  • 손영석;신지영
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.46-54
    • /
    • 2003
  • The thermal response of electronic assemblies during forced convection-infrared reflow soldering is studied. Soldering for attaching electronic components to printed circuit boards is performed in a process oven that is equipped with porous panel heaters, through which air is injected in order to dampen temperature fluctuations in the oven which can be established by thermal buoyancy forces. Forced convection-infrared reflow soldering process with air injection is simulated using a 2-dimensional numerical model. The multimode heat transfer within the reflow oven as well as within the electronic assembly is simulated. Parametric study is also performed to study the effects of various conditions such as conveyor speed, blowing velocity, and electronic assembly emissivity on the thermal response of electronic assemblies. The results of this study can be used in the process oven design and selecting the oven operating conditions to ensure proper solder melting and solidification.

Heat Transfer Analysis of Infrared Reflow Soldering Process for Attaching Electronic Components to Printed Circuit Boards (전자부품의 인쇄회로기판 부착시 적외선 Reflow Soldering과정 열전달 해석)

  • Son, Young-Seok
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.105-115
    • /
    • 1997
  • A numerical study is performed to predict the thermal response of a detailed card assembly during infrared reflow soldering. The card assembly is exposed to discontinuous infrared panel heater temperature distributions and high radiative/convective heating and cooling rates at the inlet and exit of the oven. The convective, radiative and conduction heat transfer within the reflow oven as well as within the card assembly are simulated and the predictions illustrate the detailed thermal responses. The predictions show that mixed convection plays an important role with relatively high frequency effects attributed to buoyancy forces, however the thermal response of the card assembly is dominated by radiation. The predictions of the detailed card assembly thermal response can be used to select the oven operating conditions to ensure proper solder melting and minimization of thermally induced card assembly tresses and warpage.

  • PDF

Reflow of Sn Solder Bumps using Rapid Thermal Annealing(RTA) method and Intermetallic Formation (급속 열처리 방법에 의한 Sn 솔더 범프의 리플로와 금속간 화합물 형성)

  • Yang, Ju-Heon;Cho, Hae-Young;Kim, Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • We studied a growth behavior of Intermetallic compounds(IMCs) during solder bumping with two reflow methods. Ti(50 nm), Cu($1{\mu}m$), Au(50 nm) and Ti(50 nm) thin films were deposited on $SiO_2$/Si wafer using the DC magnetron sputtering system as the under bump metallization(UBM). And the $5{\mu}m$ thick Cu bumps and $20{\mu}m$ thick Sn bumps were fabricated on UBM by electroplating. Sn bumps were reflowed in RTA(Rapid Thermal Annealing) system and convection reflow oven. When RTA system was used, reflow was possible without using flux and IMC thickness formed in the solder interface was thinner than that of a convectional method.

  • PDF