• Title/Summary/Keyword: Convection heat transfer coefficient

Search Result 192, Processing Time 0.041 seconds

Simulation of Radiative Property Effects on Radiant Cooling of Opaque Surface (비 투과면 복사 냉각에 대한 복사 물성의 영향 예측)

  • Byun, Ki-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.32-38
    • /
    • 2009
  • The effects of surface radiative properties on the radiant cooling of opaque surfaces under clear sky condition are studied. Two types of surfaces, one gray and the other selective, are compared. For the nighttime cooling, black surface gives the lowest plate temperature and on the other hand the ideal selective surface gives the highest temperature. The reverse is true when there is an insolation. Equivalent radiative heat transfer coefficient of radiant cooling without convection is about $1{\sim}7\;W/m^2-K$ for the range of values studied. The surface with black within the $6{\sim}13\;{\mu}m$ band else zero emissivity could be regarded as a black surface for the nighttime radiant cooling purposes. However, lower band limit of $4\;{\mu}m$ is preferred to $6\;{\mu}m$ for small insolation situations.

Temperature Rise Prediction of 145kV 40kA Three-phase GIS Bus Bar (145kV 40kA 3상 GIS 모선의 온도상승 예측)

  • Kim, Joong-Kyoung;Lee, Ji-Yeon;Jung, Sang-Yong;Hahn, Sung-Chin
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.842-843
    • /
    • 2008
  • Many works on the temperature prediction of power apparatus have usually done by coupled magneto-thermal analysis. However, this method can not consider the internal gas or oil flow in the power apparatus. This paper proposes a new coupled magneto-thermal-flow analysis considering Navier-Stokes equations. The convection heat transfer coefficient is calculated analytically and is applied to the boundary condition to the proposed method. Temperature distribution of 145kV 40kA three-phase GIS bus bar model is obtained by coupled magneto-thermal-flow analysis and shows good agreement with the experimental data.

  • PDF

EFFECTS OF SORET AND DUFOUR ON NATURAL CONVECTIVE FLUID FLOW PAST A VERTICAL PLATE EMBEDDED IN POROUS MEDIUM IN PRESENCE OF THERMAL RADIATION VIA FEM

  • RAJU, R. SRINIVASA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.309-332
    • /
    • 2016
  • Finite element method has been applied to solve the fundamental governing equations of natural convective, electrically conducting, incompressible fluid flow past an infinite vertical plate surrounded by porous medium in presence of thermal radiation, viscous dissipation, Soret and Dufour effects. In this research work, the results of coupled partial differential equations are found numerically by applying finite element technique. The sway of significant parameters such as Soret number, Dufour number, Grashof number for heat and mass transfer, Magnetic field parameter, Thermal radiation parameter, Permeability parameter on velocity, temperature and concentration evaluations in the boundary layer region are examined in detail and the results are shown in graphically. Furthermore, the effect of these parameters on local skin friction coefficient, local Nusselt number and Sherwood numbers is also investigated. A very good agreement is noticed between the present results and previous published works in some limiting cases.

인공심장판막의 현황

  • 김형묵
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.94-96
    • /
    • 1989
  • Explosive evaporative removal process of biological tissue by absorption of a CW laser has been simulated by using gelatin and a multimode Nd:YAG laser. Because the point of maximun temperature of laser-irradiated gelatin exists below the surface due to surface cooling, evaporation at the boiling temperature is made explosively from below the surface. The important parameters of this process are the conduction loss to laser power absorption (defined as the conduction-to-laser power parameter, Nk), the convection heat transfer at the surface to conduction loss (defined as Bi), dimensionless extinction coefficient (defined as Br.), and dimensionless irradiation time (defined as Fo). Dependence of Fo on Nk and Bi has been observed by experiment, and the results have been compared with the numerical results obtained by solving a 2-dimensional conduction equation. Fo and explosion depth (from the surface to the point of maximun temperature) are increased when Nk and Bi are increased.To find out the minimum laser power for explosive evaporative removal process, steady state analysis has been also made. The limit of Nk to induce evaporative removal, which is proportional to the inverse of the laser power, has been obtained.

  • PDF

Preparation of High-Efficient Oil-based Nanofluids and It's Application to the Transformer (고효율 나노절연유 제조 및 변압기에의 적용)

  • Yoo, Hyun-Sung;Choi, Cheol;Oh, Je-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.31-32
    • /
    • 2007
  • Oil-based nanofluids are prepared by dispersing spherical and fiber-shaped $Al_2O_3$ and AlN nanoparticles in transformer oil. Two hydrophobic surface modification processes are compared in this investigation. It is obvious that the combination of nanoparticle, surfactant and surface modification process is very important for the dispersity of nanofluids. For ($Al_2O_3$+AIN) particles with 1% volume fraction, the enhancement of thermal conductivity and convective heat transfer coefficient is nearly 11% and 30%, respectively, compared to pure transformer oil. The cooling effect of ($Al_2O_3$+AlN)-oil nanofluids on the heating element and oil itself is confirmed by a natural convection test using a prototype transformer.

  • PDF

Forced Convection Modelling of a Solar Central Receiver using Nonisothermal Cylinders in Crossflow (비등온 실린더 모델을 이용한 태양로의 강제 대류에 의한 열 손실 분석)

  • Chun, Won-Gee;Jeon, Myung-Seok;Jeon, Hong-Seok;Auh, P. Chung-Moo;Boehn, Robert F.
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.13-18
    • /
    • 1990
  • When nonuniform thermal boundary conditions are imposed on the surface of a circular cylinder in crossflow, the heat transfer characteristics can be quite different compared to what is found for isothermal or constant heat flux boundary conditions. In the present analysis, two kinds of nonuniform boundary conditions along the circumference of the cylinder are considered in a uniform stream of air: step changes and linear profiles. Step changes in temperature can arise on the surface of an external, cylindrical, solar central receiver. As the working fluid(water) flows through the vertical tubes that ring the circumference of Solar One(a solar central receiver in Barstow, California), the solar flux on the receiver heats the water from a liquid to a superheated state. In this process, portions of the receiver panels, and thus portions of the circumference of the cylinder, function as a preheater, boiler, or superheater. Hence the surface temperature can vary significantly around the cylinder. Common engineering practice has been to use an average wall temperature with an isothermal cylinder heat transfer coefficient when estimating the convective loss in these kinds of situations.

  • PDF

Prismatic-core advanced high temperature reactor and thermal energy storage coupled system - A preliminary design

  • Alameri, Saeed A.;King, Jeffrey C.;Alkaabi, Ahmed K.;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.248-257
    • /
    • 2020
  • This study presents an initial design for a novel system consisting in a coupled nuclear reactor and a phase change material-based thermal energy storage (TES) component, which acts as a buffer and regulator of heat transfer between the primary and secondary loops. The goal of this concept is to enhance the capacity factor of nuclear power plants (NPPs) in the case of high integration of renewable energy sources into the electric grid. Hence, this system could support in elevating the economics of NPPs in current competitive markets, especially with subsidized solar and wind energy sources, and relatively low oil and gas prices. Furthermore, utilizing a prismatic-core advanced high temperature reactor (PAHTR) cooled by a molten salt with a high melting point, have the potential in increasing the system efficiency due to its high operating temperature, and providing the baseline requirements for coupling other process heat applications. The present research studies the neutronics and thermal hydraulics (TH) of the PAHTR as well as TH calculations for the TES which consists of 300 blocks with a total heat storage capacity of 150 MWd. SERPENT Monte Carlo and MCNP5 codes carried out the neutronics analysis of the PAHTR which is sized to have a 5-year refueling cycle and rated power of 300 MWth. The PAHTR has 10 metric tons of heavy metal with 19.75 wt% enriched UO2 TRISO fuel, a hot clean excess reactivity and shutdown margin of $33.70 and -$115.68; respectively, negative temperature feedback coefficients, and an axial flux peaking factor of 1.68. Star-CCM + code predicted the correct convective heat transfer coefficient variations for both the reactor and the storage. TH analysis results show that the flow in the primary loop (in the reactor and TES) remains in the developing mixed convection regime while it reaches a fully developed flow in the secondary loop.

Non-gray Radiation in the Entrance Region of a Smooth Tube (평편한 튜브의 입구 영역에서의 비회복사)

  • Seo, Tae-Beom
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.91-103
    • /
    • 1995
  • Non-gray radiation with convection in the entrance region of a smooth tube is numerically investigated. The fluid is a mixture of carbon dioxide, water vapor, and nitrogen to simulate combustion products of propane. The flow is assumed to be laminar and hydrodynamically and thermally developing. The P-1 approximation is used to simplify the radiative transfer equation and the exponential wide band model is adapted to model the spectral absorption coefficients of non-gray gas mixture. The bulk mean temperature and Nusselt number variation along the tube axis are shown for several inlet and wall temperature pairs to show the effect of temperature on the heat transfer characteristics. Nusselt numbers for simultaneously developing flow are compared to those for thermally developing flow. In addition, the effect of the mole fraction of the non-gray gases on convective and radiative Nusselt numbers is investigated.

  • PDF

An Experimental Study on the Bed Combustion Phenomena in MSW(Municipal Solid Waste) Incinerator (폐기물 소각로 베드에서의 연소현상 관찰을 위한 실험적 연구)

  • Min, Jee Hyun;Shin, Donghoon;Choi, Sangmin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.159-165
    • /
    • 1999
  • Experimental studies have been performed to observe the basic phenomena of waste bed combustion in MSW incinerator. A reduced scale apparatus was utilized to simulate the combustion behavior in real plant with 1-dimensional transient behavior at the experimental setup, which uses wet cubic wood with ash content as simulated waste. LHV (lower heating value) of solid fuel, fuel particle size and flow rate of combustion air were taken as important parameters of the bed combustion. For the quantitative analysis, FPR (flame propagation rate), TBT (total burn-out time) and PBT (particle burn-out time) was defined. LHV represent the capability of heat release of the fuel, so that a higher LHV results in faster reaction rate of the fuel bed, which is shown by higher FPR. Fuel particle size is related with surface area per unit mass as well as heat and mass transfer coefficient. As the particle size increases the FPR decreases owing to decreasing specific surface area. Air injection supplies oxygen to the reaction zone. However oversupply of combustion air increases convection cooling of the bed and possibly extinguishes the flame.

Prediction of Phase Transformation of Boron Steel Sheet during Hot Press Forming using Material Properties Modeler and DEFORMTM-HT (보론 강판의 핫 프레스 포밍 공정 시 재료 물성 모델러와 DEFORMTM-HT를 활용한 상 변태 예측)

  • Kang, K.P.;Lee, K.H.;Kim, Y.S.;Ji, M.W.;Suh, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.249-256
    • /
    • 2008
  • Combined phase transformation and heat transfer was considered on the simulation of hot press forming process, using material properties modeler, $JMatPro^{(R)}$ and a finite element package, $DEFORM^{TM}$-HT. In order to obtain high temperature mechanical properties and flow curves for different phases, a material properties modeler, $JMatPro^{(R)}$ was used, avoiding expensive and extensive high temperature materials tests. The results successfully show that the strength of hot press forming parts may exhibit different strength in the same parts, depending on the contact of blank with tooling. It was also shown effectively that the strength of the parts can be controlled by designing appropriate cooling paths and coolants. This was shown in terms of different heat convection coefficient in the calculation. Overall, current combination of software was shown to be an effective tool for the tool and process design of hot forming process, although the material modeler needs to be additionally verified by an appropriate set of high temperature materials test.