• Title/Summary/Keyword: Conv1D

Search Result 21, Processing Time 0.022 seconds

Attention-based CNN-BiGRU for Bengali Music Emotion Classification

  • Subhasish Ghosh;Omar Faruk Riad
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.47-54
    • /
    • 2023
  • For Bengali music emotion classification, deep learning models, particularly CNN and RNN are frequently used. But previous researches had the flaws of low accuracy and overfitting problem. In this research, attention-based Conv1D and BiGRU model is designed for music emotion classification and comparative experimentation shows that the proposed model is classifying emotions more accurate. We have proposed a Conv1D and Bi-GRU with the attention-based model for emotion classification of our Bengali music dataset. The model integrates attention-based. Wav preprocessing makes use of MFCCs. To reduce the dimensionality of the feature space, contextual features were extracted from two Conv1D layers. In order to solve the overfitting problems, dropouts are utilized. Two bidirectional GRUs networks are used to update previous and future emotion representation of the output from the Conv1D layers. Two BiGRU layers are conntected to an attention mechanism to give various MFCC feature vectors more attention. Moreover, the attention mechanism has increased the accuracy of the proposed classification model. The vector is finally classified into four emotion classes: Angry, Happy, Relax, Sad; using a dense, fully connected layer with softmax activation. The proposed Conv1D+BiGRU+Attention model is efficient at classifying emotions in the Bengali music dataset than baseline methods. For our Bengali music dataset, the performance of our proposed model is 95%.

The Fault Diagnosis Model of Ship Fuel System Equipment Reflecting Time Dependency in Conv1D Algorithm Based on the Convolution Network (합성곱 네트워크 기반의 Conv1D 알고리즘에서 시간 종속성을 반영한 선박 연료계통 장비의 고장 진단 모델)

  • Kim, Hyung-Jin;Kim, Kwang-Sik;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.367-374
    • /
    • 2022
  • The purpose of this study was to propose a deep learning algorithm that applies to the fault diagnosis of fuel pumps and purifiers of autonomous ships. A deep learning algorithm reflecting the time dependence of the measured signal was configured, and the failure pattern was trained using the vibration signal, measured in the equipment's regular operation and failure state. Considering the sequential time-dependence of deterioration implied in the vibration signal, this study adopts Conv1D with sliding window computation for fault detection. The time dependence was also reflected, by transferring the measured signal from two-dimensional to three-dimensional. Additionally, the optimal values of the hyper-parameters of the Conv1D model were determined, using the grid search technique. Finally, the results show that the proposed data preprocessing method as well as the Conv1D model, can reflect the sequential dependency between the fault and its effect on the measured signal, and appropriately perform anomaly as well as failure detection, of the equipment chosen for application.

Comparison of Fault Diagnosis Accuracy Between XGBoost and Conv1D Using Long-Term Operation Data of Ship Fuel Supply Instruments (선박 연료 공급 기기류의 장시간 운전 데이터의 고장 진단에 있어서 XGBoost 및 Conv1D의 예측 정확성 비교)

  • Hyung-Jin Kim;Kwang-Sik Kim;Se-Yun Hwang;Jang-Hyun Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.110-110
    • /
    • 2022
  • 본 연구는 자율운항 선박의 원격 고장 진단 기법 개발의 일부로 수행되었다. 특히, 엔진 연료 계통 장비로부터 계측된 시계열 데이터로부터 상태 진단을 위한 알고리즘 구현 결과를 제시하였다. 엔진 연료 펌프와 청정기를 가진 육상 실험 장비로부터 진동 시계열 데이터 계측하였으며, 이상 감지, 고장 분류 및 고장 예측이 가능한 심층 학습(Deep Learning) 및 기계 학습(Machine Learning) 알고리즘을 구현하였다. 육상 실험 장비에 고장 유형 별로 인위적인 고장을 발생시켜 특징적인 진동 신호를 계측하여, 인공 지능 학습에 이용하였다. 계측된 신호 데이터는 선행 발생한 사건의 신호가 후행 사건에 영향을 미치는 특성을 가지고 있으므로, 시계열에 내포된 고장 상태는 시간 간의 선후 종속성을 반영할 수 있는 학습 알고리즘을 제시하였다. 고장 사건의 시간 종속성을 반영할 수 있도록 순환(Recurrent) 계열의 RNN(Recurrent Neural Networks), LSTM(Long Short-Term Memory models)의 모델과 합성곱 연산 (Convolution Neural Network)을 기반으로 하는 Conv1D 모델을 적용하여 예측 정확성을 비교하였다. 특히, 합성곱 계열의 RNN LSTM 모델이 고차원의 순차적 자연어 언어 처리에 장점을 보이는 모델임을 착안하여, 신호의 시간 종속성을 학습에 반영할 수 있는 합성곱 계열의 Conv1 알고리즘을 고장 예측에 사용하였다. 또한 기계 학습 모델의 효율성을 감안하여 XGBoost를 추가로 적용하여 고장 예측을 시도하였다. 최종적으로 연료 펌프와 청정기의 진동 신호로부터 Conv1D 모델과 XGBoost 모델의 고장 예측 성능 결과를 비교하였다

  • PDF

Deep learning based Person Re-identification with RGB-D sensors

  • Kim, Min;Park, Dong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.35-42
    • /
    • 2021
  • In this paper, we propose a deep learning-based person re-identification method using a three-dimensional RGB-Depth Xtion2 camera considering joint coordinates and dynamic features(velocity, acceleration). The main idea of the proposed identification methodology is to easily extract gait data such as joint coordinates, dynamic features with an RGB-D camera and automatically identify gait patterns through a self-designed one-dimensional convolutional neural network classifier(1D-ConvNet). The accuracy was measured based on the F1 Score, and the influence was measured by comparing the accuracy with the classifier model (JC) that did not consider dynamic characteristics. As a result, our proposed classifier model in the case of considering the dynamic characteristics(JCSpeed) showed about 8% higher F1-Score than JC.

Prediction for Energy Demand Using 1D-CNN and Bidirectional LSTM in Internet of Energy (에너지인터넷에서 1D-CNN과 양방향 LSTM을 이용한 에너지 수요예측)

  • Jung, Ho Cheul;Sun, Young Ghyu;Lee, Donggu;Kim, Soo Hyun;Hwang, Yu Min;Sim, Issac;Oh, Sang Keun;Song, Seung-Ho;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.134-142
    • /
    • 2019
  • As the development of internet of energy (IoE) technologies and spread of various electronic devices have diversified patterns of energy consumption, the reliability of demand prediction has decreased, causing problems in optimization of power generation and stabilization of power supply. In this study, we propose a deep learning method, 1-Dimention-Convolution and Bidirectional Long Short-Term Memory (1D-ConvBLSTM), that combines a convolution neural network (CNN) and a Bidirectional Long Short-Term Memory(BLSTM) for highly reliable demand forecasting by effectively extracting the energy consumption pattern. In experimental results, the demand is predicted with the proposed deep learning method for various number of learning iterations and feature maps, and it is verified that the test data is predicted with a small number of iterations.

Measurement and Prediction of Spray Targeting Points according to Injector Parameter and Injection Condition (인젝터 설계변수 및 분사조건에 따른 분무타겟팅 지점의 측정 및 예측)

  • Mengzhao Chang;Bo Zhou;Suhan Park
    • Journal of ILASS-Korea
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • In the cylinder of gasoline direct injection engines, the spray targeting from injectors is of great significance for fuel consumption and pollutant emissions. The automotive industry is putting a lot of effort into improving injector targeting accuracy. To improve the targeting accuracy of injectors, it is necessary to develop models that can predict the spray targeting positions. When developing spray targeting models, the most used technique is computational fluid dynamics (CFD). Recently, due to the superiority of machine learning in prediction accuracy, the application of machine learning in this field is also receiving constant attention. The purpose of this study is to build a machine learning model that can accurately predict spray targeting based on the design parameters of injectors. To achieve this goal, this study firstly used laser sheet beam visualization equipment to obtain many spray cross-sectional images of injectors with different parameters at different injection pressures and measurement planes. The spray images were processed by MATLAB code to get the targeting coordinates of sprays. A total of four models were used for the prediction of spray targeting coordinates, namely ANN, LSTM, Conv1D and Conv1D & LSTM. Features fed into the machine learning model include injector design parameters, injection conditions, and measurement planes. Labels to be output from the model are spray targeting coordinates. In addition, the spray data of 7 injectors were used for model training, and the spray data of the remaining one injector were used for model performance verification. Finally, the prediction performance of the model was evaluated by R2 and RMSE. It is found that the Conv1D&LSTM model has the highest accuracy in predicting the spray targeting coordinates, which can reach 98%. In addition, the prediction bias of the model becomes larger as the distance from the injector tip increases.

Spatial reproducibility of complex fractionated atrial electrogram depending on the direction and configuration of bipolar electrodes: an in-silico modeling study

  • Song, Jun-Seop;Lee, Young-Seon;Hwang, Minki;Lee, Jung-Kee;Li, Changyong;Joung, Boyoung;Lee, Moon-Hyoung;Shim, Eun Bo;Pak, Hui-Nam
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.507-514
    • /
    • 2016
  • Although 3D-complex fractionated atrial electrogram (CFAE) mapping is useful in radiofrequency catheter ablation for persistent atrial fibrillation (AF), the directions and configuration of the bipolar electrodes may affect the electrogram. This study aimed to compare the spatial reproducibility of CFAE by changing the catheter orientations and electrode distance in an in -silico left atrium (LA). We conducted this study by importing the heart CT image of a patient with AF into a 3D-homogeneous human LA model. Electrogram morphology, CFAE-cycle lengths (CLs) were compared for 16 different orientations of a virtual bipolar conventional catheter (conv-cath: size 3.5 mm, inter-electrode distance 4.75 mm). Additionally, the spatial correlations of CFAE-CLs and the percentage of consistent sites with CFAE-CL<120 ms were analyzed. The results from the conv-cath were compared with that obtained using a mini catheter (mini-cath: size 1 mm, inter-electrode distance 2.5 mm). Depending on the catheter orientation, the electrogram morphology and CFAE-CLs varied (conv-cath: $11.5{\pm}0.7%$ variation, mini-cath: $7.1{\pm}1.2%$ variation), however the mini-cath produced less variation of CFAE-CL than conv-cath (p<0.001). There were moderate spatial correlations among CFAE-CL measured at 16 orientations (conv-cath: $r=0.3055{\pm}0.2194$ vs. mini-cath: $0.6074{\pm}0.0733$, p<0.001). Additionally, the ratio of consistent CFAE sites was higher for mini catheter than conventional one ($38.3{\pm}4.6%$ vs. $22.3{\pm}1.4%$, p<0.05). Electrograms and CFAE distribution are affected by catheter orientation and electrode configuration in the in-silico LA model. However, there was moderate spatial consistency of CFAE areas, and narrowly spaced bipolar catheters were less influenced by catheter direction than conventional catheters.

Prediction of Tier in Supply Chain Using LSTM and Conv1D-LSTM (LSTM 및 Conv1D-LSTM을 사용한 공급 사슬의 티어 예측)

  • Park, KyoungJong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.120-125
    • /
    • 2020
  • Supply chain managers seek to achieve global optimization by solving problems in the supply chain's business process. However, companies in the supply chain hide the adverse information and inform only the beneficial information, so the information is distorted and cannot be the information that describes the entire supply chain. In this case, supply chain managers can directly collect and analyze supply chain activity data to find and manage the companies described by the data. Therefore, this study proposes a method to collect the order-inventory information from each company in the supply chain and detect the companies whose data characteristics are explained through deep learning. The supply chain consists of Manufacturer, Distributor, Wholesaler, Retailer, and training and testing data uses 600 weeks of time series inventory information. The purpose of the experiment is to improve the detection accuracy by adjusting the parameter values of the deep learning network, and the parameters for comparison are set by learning rate (lr = 0.001, 0.01, 0.1) and batch size (bs = 1, 5). Experimental results show that the detection accuracy is improved by adjusting the values of the parameters, but the values of the parameters depend on data and model characteristics.

A 0.31pJ/conv-step 13b 100MS/s 0.13um CMOS ADC for 3G Communication Systems (3G 통신 시스템 응용을 위한 0.31pJ/conv-step의 13비트 100MS/s 0.13um CMOS A/D 변환기)

  • Lee, Dong-Suk;Lee, Myung-Hwan;Kwon, Yi-Gi;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.75-85
    • /
    • 2009
  • This work proposes a 13b 100MS/s 0.13um CMOS ADC for 3G communication systems such as two-carrier W-CDMA applications simultaneously requiring high resolution, low power, and small size at high speed. The proposed ADC employs a four-step pipeline architecture to optimize power consumption and chip area at the target resolution and sampling rate. Area-efficient high-speed high-resolution gate-bootstrapping circuits are implemented at the sampling switches of the input SHA to maintain signal linearity over the Nyquist rate even at a 1.0V supply operation. The cascode compensation technique on a low-impedance path implemented in the two-stage amplifiers of the SHA and MDAC simultaneously achieves the required operation speed and phase margin with more reduced power consumption than the Miller compensation technique. Low-glitch dynamic latches in sub-ranging flash ADCs reduce kickback-noise referred to the differential input stage of the comparator by isolating the input stage from output nodes to improve system accuracy. The proposed low-noise current and voltage references based on triple negative T.C. circuits are employed on chip with optional off-chip reference voltages. The prototype ADC in a 0.13um 1P8M CMOS technology demonstrates the measured DNL and INL within 0.70LSB and 1.79LSB, respectively. The ADC shows a maximum SNDR of 64.5dB and a maximum SFDR of 78.0dB at 100MS/s, respectively. The ABC with an active die area of $1.22mm^2$ consumes 42.0mW at 100MS/s and a 1.2V supply, corresponding to a FOM of 0.31pJ/conv-step.

A Study on Rescue Technique and Safe Tow of Damaged Ship (2) - Failure Mechanisms of Collision and Grounding of Double Hull Tanker - (손상된 선박의 구난 기술 및 안전 예항에 관한 연구 (2) - 이중선체 유조선의 충돌 및 좌초에 의한 손상역학거동 -)

  • Lee Sang-Gab;Choi Kyung-Sik;Shon Kyoung-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.82-95
    • /
    • 1998
  • In this paper, two series of numerical simulations are performed using LS/DYNA3D: The first series of numerical simulations are collision events between a 310,000 DWT double hull VLCC (struck ship) and two 35,000 and 105,000 DWT tankers (striking ships). Collisions are assumed to occur at the middle of the VLCC with the striking ships moving at right angle to the YLCC centerline. The second ones, grounding accidents of two 40,000 DWT Conventional and Advanced Double Hull lanker bottom structures, CONV/PD328 and ADH/PD328 models. The overall objective of this study is to understand the structural failure and energy absorbing mechanisms during collision and grounding events for double hull tanker side and bottom structures, which lead to the initiation of inner shell rupture and cause the kinetic energy dissipation to bring the ship to a stop. These numerical simulations will contribute to the estimation of damage extents of collision and grounding accidents and the future improvements in lanker safety at the design stage.

  • PDF