• 제목/요약/키워드: Controller switching

검색결과 829건 처리시간 0.022초

낮은 스위칭 주파수를 갖는 대용량 무정전 전원장치를 위한 반복제어기 (Repetitive Controller for High Power UPS System with Low Switching Frequency)

  • 이태영;조영훈;김지수;변용섭
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.477-478
    • /
    • 2016
  • This paper introduces a repetitive controller in low switching frequency applications. Generally, A high power UPS system has a high rated current. And the system usually consist of high power IGBT has a tail current. So the high power UPS system operates in low switching frequency because of this tail current. The repetitive controller improve THD of output voltage or current by reducing the steady state error. The effect of the repetitive controller is proved by simulations.

  • PDF

산업용 서보 구동 시스템을 위한 자동 P/PI 속도 제어기 설계 (Automatic P/PI Speed Controller Design for Industry Servo Drives)

  • 배상규;석줄기;김경태;이동춘
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권12호
    • /
    • pp.616-623
    • /
    • 2003
  • Conventional P/PI speed controller of today's servo drives should be manually tuned the controller switching set-point by trial-and-errors, which may translate the drive system down-time and loss of productivity. The adjustable drive performance is heavily dependent on the quality of the expert knowledge and becomes inadequate in applications where the operating conditions change in a wide range, i.e., tracking command, acceleration/deceleration time, and load disturbances. In this paper, the demands on simple controls/setup are discussed for industry servo drives. Analyzing the frequency content of motor torque command, P/PI control mode switching is automatically performed with some prior knowledge of the mechanical dynamics. The dynamic performance of the proposed scheme assures a desired tracking response curve with minimal oscillation and settling time over the whole operating conditions. For comprehensive comparison of traditional P/PI control scheme, extensive test is carried out on actual servo system.

발전용 보일러 시스템의 이상허용 및 과도상태의 유연한 제어에 관한 연구 (A Study on the Fault-Tolerant and Bumpless Switching Control for Boiler Systems in the Power Plant)

  • 권오규;이영삼
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.1037-1040
    • /
    • 1998
  • In this research a fault-tolerant and bumpless switching control is proposed for boiler systems used in the power plants. Firstly, three operating points are selected to control the nonlinear boiler through the full operational range, and the $H_{\infty}$ loop shaping controller and the model-based predictive controller(MBPC) are designed. To prevent the windup and bump problems which are caused by the actuator saturation and the controller switching, an anti-windup and bumpless transfer technique is adopted to the $H_{\infty}$ loop shaping controller. Also the constrained gain-scheduling technique is applied to MBPC to achieve the same objective. Secondly, the fault-tolerant control technique is proposed to continue the control action without stopping the boiler operation even in case of some faults. Through various simulation studies, the performances of the proposed control techniques are demonstrated.

  • PDF

ZVS-Full Bridge Converter의 디지털 제어에 관한 연구 (A Study on the Digital Control of a ZVS-Full Bridge Converter)

  • 최현식;이재학
    • 전자공학회논문지T
    • /
    • 제35T권3호
    • /
    • pp.96-102
    • /
    • 1998
  • 본 논문에서는 스위칭시 ZVS 기능을 갖는 풀 브리지 위상전이 컨버터의 디지털 컨트롤러의 설계에 대해 연구하였다. 디지털 컨트롤러는 인버터나 전동기 구동 시스템에서 넓게 사용되었다. 그러나 디지털 컨트롤러는 고주파 스위칭 파워 서플라이 (특히 풀브리지 DC/DC 컨버터)에는 적용되지 못했었다. 따라서 본 논문에서는 ZVS 기능을 가진 풀 브리지 위상전이 컨버터의 디지털 컨트롤을 위한 방법을 제안하고, 기존의 아날로그 컨트롤러와 비교하였다. 수치 연산 패키지인 MATLAB을 이용한 컴퓨터 시뮬레이션을 통해 제어기 설계를 최적화하였다.

  • PDF

발전용 보일러 시스템의 이상허용 및 과도상태의 유연한 제어에 관한 연구 (A Study on the Fault-Tolerant and Bumpless Switching Control for Boiler Systems in the Power Plant)

  • 권오규;이영삼
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.689-692
    • /
    • 1998
  • In this research a fault-tolerant and bumpless switching control is proposed for boiler systems used in the power plants. Firstly, three operating points are selected to control the nonlinear boiler through the full operational range, and the $H_{\infty}$ loop shaping controller and the model-based predictive controller(MBPC) are designed. To prevent the windup and bump problems which are caused by the actuator saturation and the controller switching, an anti-windup and bump less transfer technique is adopted to the $H_{\infty}$ loop shaping controller. Also the constrained gain-scheduling technique is applied to MBPC to achieve the same objective. Secondly, the fault-tolerant control technique is proposed to continue the control action without stopping the boiler operation even in case of some faults. Through various simulation studies, the performances of the proposed control techniques are demonstrated.

  • PDF

Fuzzy Controlled ZVS Asymmetrical PWM Full-bridge DC-DC Converter for Constant load High Power Applications

  • Marikkannan., A;Manikandan., B.V
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1235-1244
    • /
    • 2017
  • This paper proposes a fuzzy logic controlled new topology of high voltage gain zero voltage switching (ZVS) asymmetrical PWM full-bridge DC-DC boost converter for constant load and high power applications. The APWM full-bridge stage provides high voltage gain and soft-switching characteristics increase the efficiency and reduce the switching losses. Fuzzy logic controller (FLC) improves the performance and dynamic characteristics of the proposed converter. A comparison with a classical proportional-integral (PI) controller demonstrates the high performances of the proposed technique in terms of effective output voltage regulation under different operating conditions. Simulation is done by integrating two different simulation platforms $PSIM^{(R)}$ and $Matlab^{(R)}/Simulink^{(R)}$ by using SimCoupler tool of $PSIM^{(R)}$. Experimental results using 120W load have been provided to validate the results.

발전용 보일러 시스템의 이상허용 및 과도상태의 유연한 제어에 관한 연구 (A Study en the Fault-Tolerant and Bumpless Switching Control for Boiler Systems in the Power Plant)

  • 권오규;이영삼
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.369-372
    • /
    • 1998
  • In this research a fault-tolerant and bumpless switching control is proposed for boiler systems used in the power plants. Firstly, three operating points are selected to control the nonlinear boiler through the full operational range, and the $H_{\infty}$ loop shaping controller and the model-based predictive controller(MBPC) are designed. To prevent the windup and bump problems which are caused by the actuator saturation and the controller switching, an anti-windup and bumpless transfer technique is adopted to the $H_{\infty}$ loop shaping controller. Also the constrained gain-scheduling technique is applied to MBPC to achieve the same objective. Secondly, the fault-tolerant control technique is proposed to continue the control action without stopping the boiler operation even in case of some faults. Through various simulation studies, the performances of the proposed control techniques are demonstrated.

  • PDF

NEURAL NETWORK CONTROLLER FOR A PERMANENT MAGNET GENERATOR APPLIED IN WIND ENERGY CONVERSION SYSTEM

  • Eskander Mona N.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.656-659
    • /
    • 2001
  • In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system(WECS) employing a permanent magnet synchronous generator, is proposed. The permanent magnet generator (PMG) supplies a dc load via a bridge rectifier and two buck-boost converters. Adjusting the switching frequency of the first buck-boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck-boost converter allows output voltage regulation. The on-times of the switching devices of the two converters are supplied by the developed neural network(NN). The effect of sudden changes in wind speed ,and/or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simultaneously with the developed neural network controller. The results proved also the fast response and robustness of the proposed control system.

  • PDF

전기차량에 적용한 Bang-Bang 제어기 연구 (A Study on The Bang-Bang Controller Applied to Electrical Vehicle)

  • 배종일
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.1089-1094
    • /
    • 2016
  • In order to establish the robust controller design technique of series wound motor driver system. This paper proposes a method of Bang-Bang controller using a series wound motor driver system under improperly variable load. A Bang-Bang controller structure is simpler than the structure of PID plus Bang-Bang controller. This paper shows that a general 8 bits microprocessor is used efficiently implementing such an algorithm. The calculation time of software is extremely small when compared with conventional PID plus Bang-Bang controller. Both nonlinear operating characteristics of digital switching elements and describing function methods are used for the analysis and synthesis. Real time implementation of Bang-Bang controller is achieved. Concept design strategy of the control and PWM waveform generation algorithms are presented in the paper.

최대 토크 해석 방정식에 의한 SRM의 구동 (The Operation of SRM through mathematical equations from the maximum torque)

  • 서종윤
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.725-728
    • /
    • 2000
  • This paper presents the switching angle and voltage for maximizing torque of 4-phase 6-poles SRM. The switching angle and voltages was determined through the approximated analysis and computer simulation by using SIMULINK according to the speed and torque required by load but we used new analytic equation from maximum torque characteristic And then one-chp micro-controller controls the switching angle and voltage of an asymmetrical inverter in the SRM driver. Also we expects that this method reduce micro-controller load and realize approximated real time control

  • PDF