• Title/Summary/Keyword: Controller parameter tuning

Search Result 262, Processing Time 0.024 seconds

Robust Optimal Nonlinear Control with Observer for Position Tracking of Permanent Magnet Synchronous Motors

  • Ha, Dong-Hyun;Lim, Chang-Soon;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.975-984
    • /
    • 2013
  • This paper proposes a robust optimal nonlinear control with an observer to reject the offset errors of position tracking for surface mounted permanent magnet synchronous motors. We provide the control method to reject offset errors and load torque for designing field oriented control (FOC) based the alternating current (AC) frame. The proposed method consists of a torque generator, a commutation scheme, an electrical controller, and a load torque observer. The mechanical controller is designed to compensate for load torque and the offset error and generate the desired torque. The commutation scheme is proposed to create the desired currents for the desired torque. The electrical controller is developed to guarantee the desired currents. The observer is designed to estimate both the velocity and the load torque. In order to obtain the robustness to parameter uncertainties and a gain tuning guide, the linear quadratic regulator method is applied to the proposed method. The closed-loop stability is proven. A detailed process for the FOC design and an analysis of the control methods based on the AC frame are presented. The performance of the proposed method was validated via experiments. The proposed method obtains the FOC based on the AC frame. Furthermore, the position tracking performance of the proposed method is superior to that of the conventional method.

Design of a permanent magnetic synchronous motor speed servo controller using on-line tuning PI control method (온라인 동조 PI 제어기법을 이용한 영구자석형 동기전동기의 속도 제어기 설계)

  • Jun, In-Hyo;Im, Sang-Duck;Choi, Jung-Keyng;Park, Seung-Yub
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.36-45
    • /
    • 1998
  • In this paper, a method of on-line PI gain-tuninng is proposed for the speed control of brushless D.C. motor by investigating the pattern of input and output without estimating parameter. Proportional gain is tuned in the process to obtain a fast speed response by supplying the maximum constant input. And integral gain is appropriately tuned in the process of proportional control so that the response may be stably converged and the overshoot may be prevented. Therefore because both control and gain-tuning are executed concurrently, additional works that estimate parameters and so on aren't required in the proposed method. In the proposed method, both fast-response and overshoot problem are well solved, and it is more useful and convenient than existing auto-tuning methods in the speed control of D.C. motor. It is illustrated by simulations and experimental results that the proposed method is useful and stable.

  • PDF

The Study of a Population and Generation Parameter's Characteristics on PID Gain Tuning with GA in Wide Solution Area (넓은 해영역에서의 GA를 이용한 PID 제어기 게인 조정에 따른 개체수와 세대수 파라미터의 특징에 관한 연구)

  • Jeong, Hwang Hun
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.60-65
    • /
    • 2017
  • A GA is one of the best method to find optimal value in searching area. A GA is driven by probabilistic selection that based on the survival of the fittest. So this algorithm need a huge solving time even if it can be used lots of optimizing problem such as structural design, machine learning, system's identification and so on. This GA's characteristic constrain the program to drive offline. Some studies try to use this algorithm on online or reduce the GA's running time with parallel GA or micro GA. Unfortunately these studies still didn't reduce amount of fitness solving. If the chromosome was imported to the system, it affected system's stability. And when the control system uses online GA, it also doesn't have enough learning time. In this study, try to find stability criterion to reduce the chromosome's affection and find the characteristic of the number of population and generation when GA was driven into the wide searching area.

Parameter Tuning Algorithm for Sliding Mode Control (슬라이딩 모드 제어를 위한 인자 튜닝 알고리듬)

  • 류세희;박장현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.438-442
    • /
    • 2003
  • For an efficient sliding mode control system stability and chattering avoidance should be guaranteed. A continuation method using boundary layer is well known as one solution for this. However since not only model uncertainties and disturbances but also control task itself is variable. it is practically impossible to set controller parameters - control discontinuity, control bandwidth, boundary layer thickness - in advance. In this paper first an adaptation law of control discontinuity is introduced to assure system stability and then fuzzy logic based tuning algorithm of design parameters is applied based on monitored performance indices of tracking error, control chattering, and model precision. In the end maximum control bandwidth not exciting unmodeled dynamics and minimum control discontinuity, boundary layer thickness making system stable and free of chattering are found respectively. This eliminates control chattering and enhances control accuracy as much as possible under given control situation. In order to demonstrate the validity of the proposed algorithm safe headway maintenance control for autonomous transportation system is simulated. The control results show that the proposed algorithm guarantees system stability all the time and tunes control parameters consistently and in consequence implements an efficient control in terms of both accuracy and actuator chattering.

  • PDF

Application of Adaptive Control Theory to Nuclear Reactor Power Control (적응제어 기법을 이용한 원자로 출력제어)

  • Ha, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.336-343
    • /
    • 1995
  • The Self Tuning Regulator(STR) method which is an approach of adaptive control theory, is ap-plied to design the fully automatic power controller of the nonlinear reactor model. The adaptive control represent a proper approach to design the suboptimal controller for nonlinear, time-varying stochastic systems. The control system is based on a third­order linear model with unknown, time-varying parameters. The updating of the parameter estimates is achieved by the recursive extended least square method with a variable forgetting factor. Based on the estimated parameters, the output (average coolant temperature) is predicted one-step ahead. And then, a weighted one-step ahead controller is designed so that the difference between the output and the desired output is minimized and the variation of the control rod position is small. Also, an integral action is added in order to remove the steady­state error. A nonlinear M plant model was used to simulate the proposed controller of reactor power which covers a wide operating range. From the simulation result, the performances of this controller for ramp input (increase or decrease) are proved to be successful. However, for step input this controller leaves something to be desired.

  • PDF

An Analytic Study On the Mutual Relation between Method(1) and (2) of ZIEGLER-NICHOLS Control Parameter Tuning (지글러-니콜스 제어파라미터 조정법(1),(2)의 상호 연관성에 대한 해석적 연구)

  • 강인철;최순만;최재성
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.112-119
    • /
    • 2001
  • Parameter tuning methods by Ziegler-Nickels for control systems are generally classified into Z-N(1) and Z-N(2). The purpose of this paper is to describe what relations exist between methods of Z-N(1) and Z-N(2), or how Z-N(1) method can be originated from Z-N(2) method by analyzing one loop control system of P or PI controller and time delay process. The formulas of Z-N(1) consist of process parameters, L(time delay), $K_m$(gain) and $T_m$(time constant), but Z-N(2) method is based only on the ultimate gain $K_u$ and the ultimate period $T_u$ acquired normally by practical trial without any parameters of Z-N(1). In this paper, for the first step to seek mutual relations, the simple formulas of Z-N(2) are transformed into the formulas composed of the same parameters as Z-N(1) which is derived from the analysis of frequency characteristics. Then, the approximation of the actual ultimate frequency is proposed as important premise in the translation between Z-N(1) and (2). Such equalization and approximation brings a simple approximated formula which can explain how Z-N(1) is originated from the Z-N(2) in the form of formula. And a model system is adopted to compare the approximated formula to Z-N(1) and Z-N(2) methods, the results of which show the effectiveness of the proposals.

  • PDF

Differential Evolution Approach for Performance Enhancement of Field-Oriented PMSMs

  • Yun, Hong Min;Kim, Yong;Choi, Han Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2301-2309
    • /
    • 2018
  • In a field-oriented vector-controlled permanent magnet synchronous motor (PMSM) control system, the d-axis current control loop can offer a free degree of freedom which can be used to improve control performances. However, in the industry the desired d-axis current command is usually set as zero without using the free degree of freedom. This paper proposes a method to use the degree of freedom for control performance improvement. It is assumed that both the inner loop proportional-integral (PI) current controller and the q-axis outer loop PI speed controller are tuned by the well-known tuning rules. This paper gives an optimal d-axis reference current command generator such that some useful performance indexes are minimized and/or a tradeoff between conflicting performance criteria is made. This paper uses a differential evolution algorithm to autotune the parameter values of the optimal d-axis reference current command generator. This paper implements the proposed control system in real time on a Texas Instruments TMS320F28335 floating-point DSP. This paper also gives experimental results showing the practicality and feasibility of the proposed control system, along with simulation results.

The Wheeled Inverted Pendulum Mobile Robot Control Using Gyroscope and Accelerometer Sensor (자이로와 가속도 센서를 이용한 차륜형 도립진자 이동로봇 제어)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.703-708
    • /
    • 2012
  • This paper proposes the improvement of control performance in the wheeled inverted mobile robot system. and describes the modeling of a wheeled inverted pendulum type mobile robot driven by two different wheels for the position and velocity control. The system is sensitive on the parameter variation, therefore control signal should change to maintain desired state of the system in every instant. we designed proportional-plus-integral controller for our system, After linearization, the system was still unstable, throughout stability analysis of the system, we designed the values of the gains of a proportional-plus-integral controller. From the experimental results, we can find that the performance of the proposed method is better than of the manual tuning method.

Optimal Design of Power System Stabilizer Using IA-QFT (IA-QFT를 이용한 전력계통 안정화 장치의 최적 설계)

  • Jeong, Hyeong-Hwan;Lee, Jeong-Pil;Jeong, Mun-Gyu;Ju, Su-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.9
    • /
    • pp.441-450
    • /
    • 2002
  • In this paper, optimal tuning problem of power system stabilizer using IA-QFT is investigated to improve power system dynamic stability in spite of parameter variation and disturbance uncertainties. The most important feature of QFT is that it is able to deal with the design problem of complicated uncertain plants. However, loop shaping is currently performed in computer aided design environments manually and it is usually a trial and error procedure. It is difficult to design a controller to satisfy all specifications manually. To solve this problem, a study of design automation using IA needs to be taken into account. The robustness of the proposed controller has been investigated on a single machine infinite bus model. The results are shown that the proposed PSS using IA-QFT is more robust than conventional PSS.

Design of Robust Torque Controller for an Internal Combustion Engine with Uncertainty (내연기관의 강인한 토크제어를 위한 제어계 설계법)

  • Kim, Young-Bok;Jeong, Jeong-Soon;Lee, Kwon-Soon;Kang, Heui-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1029-1037
    • /
    • 2010
  • If an internal combustion engine is operated by consolidated control, the minimum fuel consumption is achieved and the demanded objectives are satisfied. For this, it is necessary that the engine is operated on the ideal operating line which satisfies minimum fuel consumption. In this context of view, there are many tries to achieve given object. However, the parameters in the internal combustion engines are variable and depend on the operating points. Therefore, it is necessary to cope with the uncertainties such that the optimal operating may be possible. From this point of view, this paper gives a controller design method and a robust stability condition for engine torque control which satisfies the given control performance and robust stability in the presence of physical parameter perturbation. Exactly, in this paper, we consider the robust stability problem of this 2DOF servosystem with nonlinear type uncertainty in the engine system, and a robust stability condition for the servosystem is shown. This result guarantees that if the plant uncertainty is in the permissible set defined by the given condition, then a gain tuning can be carried out to suppress the influence of the plant uncertainties.