• Title/Summary/Keyword: Controller parameter tuning

Search Result 262, Processing Time 0.023 seconds

An Indirect Vector Control System of Induction Motor using Genetic Algorithm based PI Controller (GA-PI제어기를 이용한 유도전동기 간접 벡터제어 시스템)

  • Lee, Hak-Ju;Kwon, Sung-Chul;Seong, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1155-1157
    • /
    • 2002
  • This paper presents the use of a simple genetic algorithm for the tuning of a proportional-integral speed controller for an induction motor drive. The influence of population size, generation number and rate of mutation on the convergence of the genetic algorithm is investigated. On Matlab/Simulink environment, this paper proposes an optimal GA-PI controller of indirect vector control for induction motor drive system. The simulation results verify that the system has a more robust to the parameter variation than classical PI controller.

  • PDF

PI Controller Design Based on Characteristic Parameters and Zero Position Adjustment for an Oil Cooler System (오일쿨러시스템의 특성근과 영점 조절에 의한 고성능 PI 제어기 설계)

  • Choi, Do-Kyung;Jeong, Seok-Kwon
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.83-90
    • /
    • 2016
  • This study proposes a high-performance PI controller design method for an oil cooler system in conjunction with zero position adjustment and the characteristic parameters in its closed loop control system. The characteristic parameters included PI gains are decided by design specifications such as settling time and overshoot. The fine tuning on decided gains was performed by adjustment the zero position to get more desirable control performances. The simulations and experimental results show that the proposed PI controller design for an oil cooler system was possible to accomplish good control performances and to satisfy the design specifications.

PI controller for HVDC system simulation based on Modified nodal analysis method optimized by Genetic Algorithms (수정된 마디해석법을 사용한 HVDC 시스템 시뮬레이션을 위한 Genetic 알고리즘에 의해 최적화된 PI 컨트롤러)

  • Yang, Jeung-Je;Kang, Hyun-Sung;Ahn, Tae-Chon;Park, In-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.252-254
    • /
    • 2006
  • The recent improvement in the performance of digital processor, the application of control technology, which used in the HVDC(High Voltage Direct Current) system with the digital processors, has increased. Having this research development as the basis, this paper presents an achievement of progression by tuning the parameter of PI controller based on Genetic Algorithms(GAs) and by controlling with PI controller with a developed simulator by applying the Matrix operating function, voltage source switching element, modified nodal analysis which can include transformer and the backward Euler which does not create the problem of numerical oscillation. As a result, I expect this development in the simulator HVDC System to bring more application in the field of control technology research with an expanded practicality.

  • PDF

Current Control of DC Motor using Software Bang-Bang Algorithm (Software Bang-Bang Algorithm을 이용한 DC Motor 전류제어)

  • Bae, Jong-Il;Jung, Dong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.88-94
    • /
    • 2003
  • The DC motor has the strong characteristics in the speed response, the system parameter variations and the external influence and is used as the speed controller with its good starting torque in the distributing industry. However development of the Microprocessor which is for high speed switching program can make better control system. This paper introduce to design of the high-effective DC motor controller that is using Software Bang-Bang Program of Fuzzy algorithm and to verity a PI controller and a Fuzzy controller.

  • PDF

A Study on Driving Control of an Autonomous Guided Vehicle Using Humoral Immune Algorithm(HIA) Adaptive Controller (생체면역알고리즘 적응 제어기를 이용한 AGV 주행제어에 관한 연구)

  • Lee, K.S.;Suh, J.H.;Lee, Y.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.194-201
    • /
    • 2005
  • In this paper, we propose an adaptive mechanism based on humoral immune algorithm and neural network identifier technique. It is also applied for an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To slove this problem, we use the neural network identifier technique for modeling the plant humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. Finally, the experimental results for control of steering and speed of AGV system illustrate the validity of the proposed control scheme. Also, these results for the proposed method show that it has better performance than other conventional controller design method such as PID controller.

  • PDF

Tracking Performance Improvement of Discrete Signal using Neural Networks and Self Tuning Controller (신경망모델과 자기 동조 제어기를 이용한 이산신호의 추적 성능 개선)

  • 최수열;정연만;최부귀
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-26
    • /
    • 1998
  • In this paper, Simulation result was studied by PID controller in series to the estblised neural networks controller. Neural network model is composed of two layers to evaluate tracking performance improvement. The regular dynamics was also studied for the expected error to be minimized by using Widrow-Hoff delta rule. As a result of the study, We identified that tracking performance improvement was developed more in case of connecting PID than conventional neural network controller and that tracking plant parameter in 251 sample was approached rapidly in case of time varying.

  • PDF

Optimal Temperature Tracking Control of a Polymerization Batch Reactor by Adaptive Input-Output Linearization

  • Noh, Kap-Kyun;Dongil Shin;Yoon, En-Sup;Rhee, Hyun-Ku
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.62-74
    • /
    • 2002
  • The tracking of a reference temperature trajectory in a polymerization batch reactor is a common problem and has critical importance because the quality control of a batch reactor is usually achieved by implementing the trajectory precisely. In this study, only energy balances around a reactor are considered as a design model for control synthesis, and material balances describing concentration variations of involved components are treated as unknown disturbances, of which the effects appear as time-varying parameters in the design model. For the synthesis of a tracking controller, a method combining the input-output linearization of a time-variant system with the parameter estimation is proposed. The parameter estimation method provides parameter estimates such that the estimated outputs asymptotically follow the measured outputs in a specified way. Since other unknown external disturbances or uncertainties can be lumped into existing parameters or considered as another separate parameters, the method is useful in practices exposed to diverse uncertainties and disturbances, and the designed controller becomes robust. And the design procedure and setting of tuning parameters are simple and clear due to the resulted linear design equations. The performances and the effectiveness of the proposed method are demonstrated via simulation studies.

Load Frequency Control of Multi-area Power System using Auto-tuning Neuro-Fuzzy Controller (자기조정 뉴로-퍼지제어기를 이용한 다지역 전력시스템의 부하주파수 제어)

  • Jeong, Hyeong-Hwan;Kim, Sang-Hyo;Ju, Seok-Min;Heo, Dong-Ryeol;Lee, Gwon-Sun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.95-106
    • /
    • 2000
  • The load frequency control of power system is one of important subjects in view of system operation and control. That is even though the rapid load disturbances were applied to the given power system, the stable and reliable power should be supplied to the users, converging unconditionally and rapidly the frequency deviations and the tie-line power flow one on each area into allowable boundary limits. Nonetheless of such needs, if the internal parameter perturbation and the sudden load variation were given, the unstable phenomenal of power system can be often brought out because of the large frequency deviation and the unsuppressible power line one. Therefore, it is desirable to design the robust neuro-fuzzy controller which can stabilize effectively the given power system as soon as possible. In this paper the robust neuro-fuzzy controller was proposed and applied to control of load frequency over multi-area power system. The architecture and algorithm of a designed NFC(Neuro-Fuzzy Controller) were consist of fuzzy controller and neural network for auto tuning of fuzzy controller. The adaptively learned antecedent and consequent parameters of membership functions in fuzzy controller were acquired from the steepest gradient method for error-back propagation algorithm. The performances of the resultant NFC, that is, the steady-state deviations of frequency and tie-line power flow and the related dynamics, were investigated and analyzed in detail by being applied to the load frequency control of multi-area power system, when the perturbations of predetermined internal parameters. Through the simulation results tried variously in this paper for disturbances of internal parameters and external stepwise load stepwise load changes, the superiorities of the proposed NFC in robustness and adaptive rapidity to the conventional controllers were proved.

  • PDF

A Study on the Direct Pole Placement PID Self-Tuning Controller Design for DC Servo Motor Control (직류 서어보 전동기 제어를 위한 직접 극배치 PID 자기동조 제어기의 설계)

  • Nam, Moon-Hyun;Rhee, Kyu-Young
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.55-64
    • /
    • 1990
  • This paper concerned about a study on the direct pole placement PID self-tuning controller design for DC servo motor control system. The method of a direct pole placement self-tuning PID control for a DC servo motor of Robot manipulator tracks a reference velocity in spite of the parameters uncertainties in nonminimum phase system. In this scheme, the parameters of classical controller are estimated by the recursive least square (RLS)identification algorithm, the pole placement method and diophantine equation. A series of simulation in which minimum phase system and nonminimum phase system are subjected to a pattern of system parameter changes is presented to show some of the features of the proposed control algorithm. The proposed control algorithm which shown are effective for the practical application, and experiments of DC servo motor speed control for Robot manipulator by a microcomputer IBM-PC/AT are performed and the results are well suited.

  • PDF

A Design of 2 DOF PID Controller Using Performance Index (평가지표를 이용한 2자유도 PID제어기 설계)

  • 유항열;이정국;이금원;이준모
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.66-72
    • /
    • 2004
  • PID control has been well used for several decades. For PID algorithms, some tuning methods are used for selecting PID parameters and with these selected parameters, PID control system is designed. But in some cases various kinds of performance indices are used instead of well-known tuning rules, and so variable type of performance index must be tested so that the designed control system meets the some specifications. For 2 DOF PID controller design this paper presents a linear combinational type of performance indices constituting of index for robust performance, which is obtained by h infinity norm of a weighted complementary sensitivity function, including other time domain indices such as error, energy and changing rate of control input. By numerical methods, the optimal 2 DOF PID parameters are obtained. Therefore various types of 2 degree of freedom PID controllers such as I-PD controller are used so that this two degree of freedom PID controllers may give more desirable output characteristics. Simulations are done with MATLAB m file and mdl files.

  • PDF