• Title/Summary/Keyword: Controller gain tuning

Search Result 208, Processing Time 0.038 seconds

Implementation of the High Performance Unified PID Position Controller for Linear Motor Drive with Easy Gain Ajustment Part II - Gain Adjustment & Application (이득 설계가 간단한 선형전동기 구동용 고성능 통합 PID 위치제어기 구현 제2부: 이득설계 및 응용)

  • Kim, Jun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.4
    • /
    • pp.195-202
    • /
    • 2002
  • The high performance position controller named 'Unified PID Position Controller'is presented in part 1 of this paper. In part 2, we provide smart gain adjustment methods including the freedom utilizations for rare sensitivity toward the system parameter variation and for increasing the stiffness of the system. Owing to the provided gain tuning strategy, the overall system characteristics can be stabilized without over-shoot phenomena when the system parameter is changed in the rate of from 0.5 to 2∼4. Moreover, for the actual feasibility to the industrial fields, a simple butt effective anti-windup strategy prohibiting the integral component of the PID position controller from saturation is presented too. All of the presented algorithms are verified through the experiment works with commercial linear motor.

A study on The Fuzzy PID Controller for an gain self-tuning (이득동조를 위한 퍼지 PID 제어기의 연구)

  • 유상욱
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.3
    • /
    • pp.60-65
    • /
    • 2000
  • We propose a new method to deal with the optimal gain self-tuning of the PID controller which is used to industrial process control in various fields. First of all, in this method, first order delay system which was modeled from the unit step response of the system is Pade-approximated, then initial values are determined by the Ziegler-Nickels method. Finally, we can find the parameters of Pm controller so as to maximize the fuzzy inferencl function which includes the maximum overshoot, damping ratio, rising time and settling time. The proposed method also shows good adaptability for variations in characteristics and dead time of the system.

  • PDF

Modeling and Dynamic Analysis of Electromechanical System in Machine Tools (1$^{st}$ Report) - Gain Tuning of PI Speed Controller - (공장기계 시스템의 모델링과 동적특성 분석 (제1보) - PI 속도 제어기의 제어이득 설정 -)

  • Park, Yong-Hwan;Moon, Hee-Sung;Choe, Song-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.265-271
    • /
    • 1999
  • In the feed drive systems or the spindle systems of machine tools that consist of many mechanical components, a torsional vibration is often generated because of its elastic elements in torque transmission-Generally, the accuracy of motion control system is strongly influenced by the dynamic behavior of coupled transmission components Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So, it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed m1d spindle system. In this paper, based on the DC motor model, a model of electro-drive system with motor has been developed and an optimal criterion for tuning the gain of speed controller is discussed. The frequency bandwidth of the system and the damping ratio in time domain are optimal design specifications for the gain adjustment speed controller. The gains of PI speed controller are then derived from the bandwidth and damping ratio, and those relationships have been classified.

  • PDF

Transient Characteristics Improvement Using Hybrid Control for Inverter Systems (하이브리드 제어에 의한 인버터 시스템의 과도특성 향상)

  • Kim, Gyu-Sik
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.3 no.2
    • /
    • pp.5-10
    • /
    • 2004
  • In this paper, the hybrid-type current controller for inverter TIG systems was implemented and it was shown that the low-current pulse wave forms with high dynamic performance could be obtained. It is not sri easy to obtain the optimum gain tuning of PID controllers in digital PWM control methods. Hybrid control methods which uses automatic tuning techniques after adding fuzzy control methods to traditional PID controllers are chosen to improve the dynamic performance of PID controller's. To demonstrate the practical significance and dynamic performance improvement of the results, some simulation and experimental results are presented.

  • PDF

A PID learning controller for DC motors (DC 전동기를 위한 PID 학습제어기)

  • 백승민;이동훈;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.347-350
    • /
    • 1996
  • With only the classical PID controller applied to control of a DC motor, a good (target) performance characteristic of the controller can be obtained, if all the model parameters of DC motor and operating conditions such as external load torque, disturbance, etc. are exactly known. However, in case when some of system parameters or operating conditions are uncertain or unknown, the fixed PID controller does not guarantee the good performance which is assumed with precisely known system parameters and operating conditions. In view of this and robustness enhancement of DC motor control system, we propose a PID learning controller which consists of a set of learning rules for PID gain tuning and learning of an auxiliary input. The proposed PID learning controller is shown to drive the state of uncertain DC motor system with unknown system parameters and external load torque to the desired one globally asymptotically. Computer simulation results are given to demonstrate the effectiveness of the proposed PID learning controller, thereby showing whose superiority to the conventional fixed PID controller.

  • PDF

A study on a structure of a model reference adaptive fuzzy controller(MRAFC) (모델 레퍼런스 적응 퍼지 제어기 구조에 관한 연구)

  • Lee, Gi-Bum;Choi, Jong-Soo;Joo, Moon-Gab
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.512-514
    • /
    • 1998
  • The paper presents a model reference adaptive control containing a fuzzy algorithm for tuning the gain coefficient which adjusts the level of the fuzzy controller output. The synthesis of a fuzzy tuning algorithm has been performed for the inverted pendulum system. The computer simulation results have proved the efficiency of the proposed method, showing stable system responses.

  • PDF

Model-Free Longitudinal Acceleration Controller Design and Implementation Quickly and Easily Applicable for Different Control Interfaces of Automated Vehicles Considering Unknown Disturbances (자율 주행 제어 인터페이스에 강건하며 빠르고 쉽게 적용 가능한 모델 독립식 종 방향 가속도 제어기 개발 및 성능 검증)

  • Seo, Dabin;Jo, Ara;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.39-52
    • /
    • 2021
  • This paper presents a longitudinal acceleration controller that can be applied to real vehicles (nonlinear and time-varing systems) with only a simple experiment regardless of the type of vehicle and the control interface structure. The controller consists of a feedforward term for fast response, a zero-throttle acceleration compensation term, and a feedback term (P gain) to compensate for errors in the feedforward term, and another feedback term (I gain) to respond to disturbances such as slope. In order to easily apply it to real vehicles, there are only two tuning parameters, feedforward terms of throttle and brake control. And the remaining parameters can be calculated immediately when the two parameters are decided. The tuning procedure is also unified so that it can be quickly and easily applied to various vehicles. The performance of the controller was evaluated using MATLAB/Simulink and Truksim's European Ben model. In addition, the controller was successfully implemented to 3 medium-sized vehicle (HMC Solati), which is composed of different control interface characteristic. Vehicle driving performance was evaluated on the test track and on the urban roads in Siheung and Seoul.

STPI Controller of IPMSM Drive using Neural Network (신경회로망을 이용한 IPMSM 드라이브의 STPI 제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.2 s.314
    • /
    • pp.24-31
    • /
    • 2007
  • This paper presents self tuning PI(STPI) controller of IPMSM drive using neural network. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, STPI controller proposes a new method based neural network. STPI controller is developed to minimize overshoot, rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

New Optimal Tuning Method of IMC-PID for SI/SO Systems (단일 입출력 시스템에 대한 IMC-PID의 새로운 최적 동조법)

  • Kim, Chang-Hyun;Lim, Dong-Kyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.213-217
    • /
    • 2008
  • In this paper, a new design method for IMC-PID that adds a phase scaling factor of system identifications to the standard IMC-PID controller as a control parameter is proposed. Based on analytically derived frequency properties such as gain, phase margin and maximum magnitude of sensitivity function, this tuning rule is an optimal control method determining the optimum values of controlling factors to minimize the cost function, integral error criterion of the step response in time domain, in the constraints of design parameters to guarantee qualified frequency design specifications. The proposed controller improves existing single-parameter design methods of IMC-PID in the inflexibility problem to be able to consider various design specifications. Its effectiveness is examined by a simulation example, where a comparison of the performances obtained with the proposed tuning rule and with other common tuning rules is shown.

  • PDF

A Study on Gain Scheduling Programming with the Fuzzy Logic Controller of a 6-axis Articulated Robot using LabVIEW® (LabVIEW®를 이용한 6축 수직 다관절 로봇의 퍼지 로직이 적용된 게인 스케줄링 프로그래밍에 관한 연구)

  • Kang, Seok-Jeong;Chung, Won-Jee;Park, Seung-Kyu;Noe, Sung Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.113-118
    • /
    • 2017
  • As the demand for industrial robots and Automated Guided Vehicles (AGVs) increases, higher performance is also required from them. Fuzzy controllers, as part of an intelligent control system, are a direct control method that leverages human knowledge and experience to easily control highly nonlinear, uncertain, and complex systems. This paper uses a $LabVIEW^{(R)}-based$ fuzzy controller with gain scheduling to demonstrate better performance than one could obtain with a fuzzy controller alone. First, the work area was set based on forward kinematics and inverse kinematics programs. Next, $LabVIEW^{(R)}$ was used to configure the fuzzy controller and perform the gain scheduling. Finally, the proposed fuzzy gain scheduling controller was compared with to controllers without gain scheduling.