• 제목/요약/키워드: Controller area network

검색결과 347건 처리시간 0.026초

개인통신서비스 망 설계와 핸드오버 처리용량 분석 (A Design for PCS Network and Analysis of Handover Processing Capacity)

  • 장희선;임석구;유제훈;이윤주
    • 대한산업공학회지
    • /
    • 제22권4호
    • /
    • pp.551-565
    • /
    • 1996
  • We present the required handover capacity of personal communication service exchange(PCX). We use the flow-based mobility model. The dimension of PCX area and the number of radio port controller(RPC) in a PCX are determined according to the traffic carrying capacity of switching system and RPC. For the rectangular or square-shaped PCX/RPC area and the personal communication service environment with pedestrian traffic, we perform numerical computations to investigate the sensitivity to cell size, portable station(PS) terminating traffic, its density, and its average speed. The results how that the size of PCX/RPC area decreases as the PS terminating traffic and the PS density increase, and the PCX handover capacity required is more than 73,000 in the number of transactions per hour.

  • PDF

An Intelligent Wireless Sensor and Actuator Network System for Greenhouse Microenvironment Control and Assessment

  • Pahuja, Roop;Verma, Harish Kumar;Uddin, Moin
    • Journal of Biosystems Engineering
    • /
    • 제42권1호
    • /
    • pp.23-43
    • /
    • 2017
  • Purpose: As application-specific wireless sensor networks are gaining popularity, this paper discusses the development and field performance of the GHAN, a greenhouse area network system to monitor, control, and access greenhouse microenvironments. GHAN, which is an upgraded system, has many new functions. It is an intelligent wireless sensor and actuator network (WSAN) system for next-generation greenhouses, which enhances the state of the art of greenhouse automation systems and helps growers by providing them valuable information not available otherwise. Apart from providing online spatial and temporal monitoring of the greenhouse microclimate, GHAN has a modified vapor pressure deficit (VPD) fuzzy controller with an adaptive-selective mechanism that provides better control of the greenhouse crop VPD with energy optimization. Using the latest soil-matrix potential sensors, the GHAN system also ascertains when, where, and how much to irrigate and spatially manages the irrigation schedule within the greenhouse grids. Further, given the need to understand the microclimate control dynamics of a greenhouse during the crop season or a specific time, a statistical assessment tool to estimate the degree of optimality and spatial variability is proposed and implemented. Methods: Apart from the development work, the system was field-tested in a commercial greenhouse situated in the region of Punjab, India, under different outside weather conditions for a long period of time. Conclusions: Day results of the greenhouse microclimate control dynamics were recorded and analyzed, and they proved the successful operation of the system in keeping the greenhouse climate optimal and uniform most of the time, with high control performance.

Design and Walking Control of the Humanoid Robot, KHR-2(KAIST Humanoid Robot-2)

  • Kim, Jung-Yup;Park, Ill-Woo;Oh, Jun-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1539-1543
    • /
    • 2004
  • This paper describes platform overview, system integration and dynamic walking control of the humanoid robot, KHR-2 (KAIST Humanoid Robot - 2). We have developed KHR-2 since 2003. KHR-2 has totally 41 DOF (Degree Of Freedom). Each arm including a hand has 11 DOF and each leg has 6 DOF. Head and trunk also has 6 DOF and 1 DOF respectively. In head, two CCD cameras are used for eye. In order to control all joints, distributed control architecture is adopted to reduce the computation burden of the main controller and to expand the devices easily. The main controller attached its back communicates with sub-controllers in real-time by using CAN (Controller Area Network) protocol. We used Windows XP as its OS (Operating System) for fast development of main control program and easy extension of peripheral devices. And RTX, HAL(Hardware Abstraction Layer) extension program, is used to realize the real-time control in Windows XP environment. We present about real-time control of KHR-2 in Windows XP with RTX and basic walking control algorithm. Details of the KHR-2 are described in this paper.

  • PDF

TM/TC를 탑재한 분산제어 시스템의 실시간 제어기 설계와 구현 (Design and Implementation of Real-Time Controllers of an Enhanced Distributed Control System with Embedded TM/TC)

  • 김진태;박인갑
    • 전기전자학회논문지
    • /
    • 제3권1호
    • /
    • pp.57-68
    • /
    • 1999
  • DCS는 분산된 컴퓨터 네크워크를 이용한 통합된 EIC의 다양한 응용기술을 적용할 수 있는 원격 감시 제어가 요구되고 있다. 현재까지는 DCS는 원격 사이트의 플랜트에 대해 실시간성 보장은 기대에 미치지 못한다. 본 논문에서는 효율적인 TM/TC 시스템을 위한 각 제어기를 기존의 PRS 하드웨어와 GWS, RPS, SRS로 광역화에 맞도록 설계하였으며, 또한 각 구현된 제어기의 실시간을 만족하는 통신처리시간, 시스템 부하율을 분석하여 타당성을 검토하였다.

  • PDF

실시간 운영체제 기반의 복강경 수술 로봇의 모터제어 시스템에 관한 연구 (A Study of a RealTime OS Based Motor Control System for Laparoscopic Surgery Robot)

  • 송승준;김용;최재순;배진용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.218-221
    • /
    • 2006
  • This paper reports on a Realtime OS based motor control system for laparoscopic surgery robot which enables telesurgery and overcomes shortcomings with conventional laparoscopic surgery. The system has a conventional master-slave robot configuration and the control system consists of joint controllers, host controllers, and power units. The robot features (1) a compact slave robot with 5 DOF (Degree Of Freedom) expanding the workspace of each tool and increasing the number of tools operating simultaneously, and (2) direct 1:1 correspondence in the joint of master and slave robot that simplifies control algorithm and enhances reliability. Each master, slave and GUI (Graphical User Interface) host has a dedicated RTOS (RealTime OS), RTLinux-Pro (FSMLabs Inc., U.S.A.) Each master and slave controller set pair has a dedicated CAN (Controller Area Network) channel for control and monitoring signal communication. Total 4 pairs of the master/slave manipulators as current are monitored by one host controller for operation monitoring and higher level motion control. The system showed acceptable performance in both position control precision and master-slave motion synchronization and is now under further development for better safety and control fidelity for clinically applicable prototype.

  • PDF

자율 주행 트랙터 시스템의 성능 향상을 위한 CAN 기반의 조향제어시스템 개발 (Development of Steering Control System based on CAN for Autonomous Tractor System)

  • 서동현;서일환;정선옥;김기대
    • 농업과학연구
    • /
    • 제37권1호
    • /
    • pp.123-130
    • /
    • 2010
  • A steering control system based on CAN(Controller Area Network) for autonomous tractor was developed to reduce duty of a central processing computer and to improve performance of steering control in terms of reduced control interval and error. The steering control system consisted of a SCU (Steering Control Unit), an EHPS system, and a potentiometer. The SCU consisted of an MCU (Micro Controller unit), an A/D converter, and a DC-DC converter, and a PID controller was used to control steering angle. The steering control system was communicated with the computer by CAN-bus. Each actuator and implement was connected to a multi-function board interfacing with the computer through a USB cable. Without CAN, control interval of the autonomous tractor was 1.5 seconds. When the CAN-based steering control system was combined with the autonomous tractor, however, control interval of the integrated system was reduced to those less than 0.05 seconds. When the autonomous tractor was operated with 1.5-s and 0.05-s control cycles at a 0.63-m/s travelling speed, the trajectories were close to straight lines for both of the control cycles. For a 1.34-m/s traveling speed, tractor trajectory was close to sine wave with a 1.5-s control cycle, but was straight line with a 0.05-s control cycle.

Analysis of an Active Superconducting Current Controller (ASCC) Considering the Transient Stability and OCR Operation in Transmission and Distribution Systems

  • Gusheh, Ahmad Ghafari;Soreshjani, Mohsen Hosseinzadeh;Rahat, Omid
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.543-550
    • /
    • 2016
  • The Active Superconducting Current Controller (ASCC) is a new type of Superconducting Fault Current Limiters (SFCL) which can limit the fault current in different modes. It also has the particular abilities of compensating active and reactive powers for electrical networks. In this paper, it is confirmed that the performance of ASCC in different operating modes introduces a limiting impedance in series with the network which can even degrade the transient stability and the operation of the Over-Current Relays (OCR) employed in a power system. In addition, the model of a three-phase ASCC is simulated, and the effect of descriptive modes on the current limiting level is investigated. For the transient stability analysis, a single machine-infinite bus system is tested, and the effect of operation modes is studied based on an equal area criterion obtaining the critical time and the critical angle. Modifying the setting parameters of OCR such as time dial and pick-up current, the protective coordination is also studied in different operating modes.

무인 자율 주행 지게차 구현을 위한 네트워크 기반 분산 접근 방법 (Network-based Distributed Approach for Implementation of an Unmanned Autonomous Forklift)

  • 송영훈;박지훈;이경창;이석
    • 제어로봇시스템학회논문지
    • /
    • 제16권9호
    • /
    • pp.898-904
    • /
    • 2010
  • Unmanned autonomous forklifts have a great potential to enhance the productivity of material handling in various applications because these forklifts can pick up and deliver loads without an operator and any fixed guide. There are, however, many technical difficulties in developing such forklifts including localization, map building, sensor fusion, control and so on. Implementation, which is often neglected, is one of practical issues in developing such an autonomous device. This is because the system requires numerous sensors, actuators, and controllers that need to be connected with each other, and the number of connections grows very rapidly as the number of devices grows. Another requirement on the integration is that the system should allow changes in the system design so that modification and addition of system components can be accommodated without too much effort. This paper presents a network-based distributed approach where system components are connected to a shared CAN network, and control functions are divided into small tasks that are distributed over a number of microcontrollers with a limited computing capacity. This approach is successfully applied to develop an unmanned forklift.

차량 내 네트워크 통신의 기능안전성을 위한 하드웨어 기본 설계 (Basic Design of ECU Hardware for the Functional Safety of In-Vehicle Network Communication)

  • 곽현철;안현식
    • 전기학회논문지
    • /
    • 제66권9호
    • /
    • pp.1373-1378
    • /
    • 2017
  • This paper presents a basic ECU(Electronic Control Unit) hardware development procedure for the functional safety of in-vehicle network systems. We consider complete hardware redundancy as a safety mechanism for in-vehicle communication network under the assumption of the wired network failure such as disconnection of a CAN bus. An ESC (Electronic Stability Control) system is selected as an item and the required ASIL(Automotive Safety Integrity Level) for this item is assigned by performing the HARA(Hazard Analysis and Risk Assessment). The basic hardware architecture of the ESC system is designed with a microcontroller, passive components, and communication transceivers. The required ASIL for ESC system is shown to be satisfied with the designed safety mechanism by calculation of hardware architecture metrics such as the SPFM(Single Point Fault Metric) and the LFM(Latent Fault Metric).

OSEK/VDX 표준과 CAN 프로토콜을 사용한 차체 네트웍 시스템 개발 (Development of a Body Network System with GSEK/VDX Standards and CAN Protocol)

  • 신민석;이우택;선우명호;한석영
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.175-180
    • /
    • 2002
  • In order to satisfy the requirements of time reduction and cost saving for development of electronic control systems(ECU) in automotive industry, the applications of a standardized real-time operating system(RTOS) and a communication protocol to ECUs are increased. In this study, a body control module(BCM) that employs OSEK/VDX(open system and corresponding interfaces for automotive electronics/vehicle distributed executive) OS tour the RTOS and a controller area network(CAN) fur the communication protocol is designed, and the performances of the system are evaluated. The BCM controls doors, mirrors, and windows of the vehicle through the in-vehicle network. To identify all the transmitted and received control messages, a PC connected with the CAN communication protocol behaves as a CAN bus emulator. The control system based upon in-vehicle network improves the system stability and reduces the number of wiring harness. Furthermore it is easy to maintain and simple to add new features because the system is designed based on the standards of RTOS and communication protocol.