• 제목/요약/키워드: Controlled reactor

검색결과 294건 처리시간 0.023초

연속 교반 발효조에서 균체농도의 단순 디지탈 제어 (Simple digital control of cell mass in biological CSTR)

  • 이경범;황영보;이지태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.647-651
    • /
    • 1987
  • Yeast biomass in a biological continuous stirred tank reactor was controlled with an APPLE II microcomputer using adaptive control theory of bilinear systems. The controller used is as simple as a PID controller, but required less information. Cell concentration was well controlled by adjusting the inlet flow rate following the algorithm.

  • PDF

Conceptual design of a dual drum-controlled space molten salt reactor (D2 -SMSR): Neutron physics and thermal hydraulics

  • Yongnian Song;Nailiang Zhuang;Hangbin Zhao;Chen Ji;Haoyue Deng;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2315-2324
    • /
    • 2023
  • Space nuclear reactors are becoming popular in deep space exploration owing to their advantages of high-power density and stability. Following the fourth-generation nuclear reactor technology, a conceptual design of the dual drum-controlled space molten salt reactor (D2-SMSR) is proposed. The reactor concept uses molten salt as fuel and heat pipes for cooling. A new reactivity control strategy that combines control drums and safety drums was adopted. Critical physical characteristics such as neutron energy spectrum, neutron flux distribution, power distribution and burnup depth were calculated. Flow and heat transfer characteristics such as natural convection, velocity and temperature distribution of the D2-SMSR under low gravity conditions were analyzed. The reactivity control effect of the dual-drums strategy was evaluated. Results showed that the D2-SMSR with a fast spectrum could operate for 10 years at the full power of 40 kWth. The D2-SMSR has a high heat transfer coefficient between molten salt and heat pipe, which means that the core has a good heat-exchange performance. The new reactivity control strategy can achieve shutdown with one safety drum or three control drums, ensuring high-security standards. The present study can provide a theoretical reference for the design of space nuclear reactors.

Modeling and adaptive pole-placement control of LDPE autoclave reactor

  • Ham, Jae-Yong;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.146-151
    • /
    • 1992
  • A two-compartment four-cell model is developed for the adiabatic autoclave slim type reactor for free radical polymerization of low density polyethylene(LDPE). The mass and energy balances give rise to a set of ordinary differential equations, and by analyzing the system it is possible to predict properly not only the reactor performance but also the properties of polymer product. The steady state multiplicity is found to exist and examined by constructing the bifurcation diagram. The effects of various operation parameters on the reactor performance and polymer properties are investigated systematically to show that the temperature distribution plays the central role for the properties of polymer product. Therefore, it is essential to establish a good control strategy for the temperature in each compartment. In this study it is shown that the reactor system can be adoptively controlled by pole-placement algorithm with conventional PID controller. To accomplish a satisfactory control, the estimator and controller are initialized during the period of start-up.

  • PDF

Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system

  • Wang, Chenglong;Sun, Hao;Tang, Simiao;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.19-26
    • /
    • 2020
  • Small nuclear reactor features higher power capacity, longer operation life than conventional power sources. It could be an ideal alternative of existing power source applied for special equipment for terrestrial or underwater missions. In this paper, a 25kWe heat pipe cooled reactor power source applied for multiple use is preliminary designed. Based on the design, a thermal-hydraulic analysis code for heat pipe cooled reactor is developed to analyze steady and transient performance of the designed nuclear reactor. For reactor design, UN fuel with 65% enrichment and potassium heat pipes are adopted in the reactor core. Tungsten and LiH are adopted as radiation shield on both sides of the reactor core. The reactor is controlled by 6 control drums with B4C neutron absorbers. Thermoelectric generator (TEG) converts fission heat into electricity. Cooling water removes waste heat out of the reactor. The thermal-hydraulic characteristics of heat pipes are simulated using thermal resistance network method. Thermal parameters of steady and transient conditions, such as the temperature distribution of every key components are obtained. Then the postulated reactor accidents for heat pipe cooled reactor, including power variation, single heat pipe failure and cooling channel blockage, are analyzed and evaluated. Results show that all the designed parameters satisfy the safety requirements. This work could provide reference to the design and application of the heat pipe cooled nuclear power source.

TCR을 이용한 Voltage Sag와 Swell 발생장치에 대한 연구 (Voltage Sag and Swell Generator with Thyristor Controlled Reactor)

  • 박태범;권기현;정용호;이진;임계영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.25-27
    • /
    • 2002
  • This paper describes a new economical voltage sag and swell generator suitable to the evaluations of high power custom power devices such as DVR (Dynamic Voltage Restorer) and DSTATCOM (Distribution Static Compensator). This system was designed to generate the several power quality disturbances in MVA power ratings - voltage sag and swell, under voltage, over voltage and harmonic distortions. The basic idea for voltage sag and swell is to use the voltage drop across a reactor, while the voltage swell is to use the step-up transformer and the TCR(Thyristor Controlled Reactor). In this paper, two identical 3 phase TCRs and a step-up transformer with tap changer are used. Additional harmonic filters are added to reduce the voltage distortion when TCRs are operated. Simulation results are given for several cases of voltage sag and swell generations.

  • PDF

난류 확산화염에서 체류시간이 실리카 나노입자의 생성에 미치는 영향 (The Effect of Residence Time on the Generation of Silica Nanoparticles in a Turbulent Diffusion Flame)

  • 곽인재;배수호;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.196-201
    • /
    • 2006
  • Silica(SiO2) nanoparticles are used as additives in plastics and rubbers to improve mechanical, electrical, magnetic properties and optical material. Silica nanoparticles were synthesized by the gas phase thermal oxidation of several kinds of precursors in many types of reactor. Diffusion flame reactor has some advantages compared with other types of reactors. In this study, we investigated the generation of silica nanoparticles on the effect of residence time by tetraethylothosilicate(TEOS) in a turbulent diffusion flame reactor controlled by providing reactant flowrate and reactor geometry affect particle morphology, particle size and particle size distribution. To determine the flame residence time, flame length should be determined which was examined by ICCD image. Particle size, distribution and morphology were performed with TEM.

  • PDF

역 유동층 생물막 반응기를 이용한 유분함유폐수 처리에 관한 연구 (A study on the treatment of highly-emulsified oily wastewater by an inverse fluidized-bed biofilm reactor)

  • 최윤찬;나영수
    • 한국환경과학회지
    • /
    • 제5권3호
    • /
    • pp.361-367
    • /
    • 1996
  • An inverse fluidized-bed biofilm reactor (IFBBR) was used for the treatment of highly-emulsified oily wastewater. When the concentration of biomass which was cultivated in the synthetic wastewater reached to 6000 mg/1, the oily wastewater was employed to the reactor with a input COD concentration range of 50 mg/1 to 1900 mg/l. Virtually the IFBBR showed a high stability during the long operation period although soma fluctuation was observed. The COD removal efficiency was maintained over 9% under the condition that organic loading rate should be controlled under the value of 1.5 kgCOD/$m^3$/day, and F/M ratio is 1.0 kgCOD/kgVSS/day at $22{\circ}C$ and HRT of 12 hrs. As increasing organic loading rates, the biomass concentration was decreased steadily with decreasing of biofilm dry density rather than biofilm thickness. Based on the experimental jesuits, it was suggested that the decrease in biofilm dry density was caused by a loss of biomass inside the biofilm.

  • PDF

침대 평판형 플라즈마장치의 코로나 방전 및 오존발생 특성에 미치는 원통형 3전극의 영향 (Effect of a Cylindrical Third Electrode of a Point-Plate Type Plasma Reactor on Corona Discharge and Ozone Generation Characteristics)

  • 문재덕;정호준;정재승
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.933-937
    • /
    • 2007
  • A point plate type nonthermal plasma reactor, with a grounded cylindrical third electrode which closely- encompasses the needle point, have been investigated with an emphasis on the role of the third electrode. It was found that the point plate airgap, with the grounded third electrode, had a switching characteristic on its I V characteristics for negative and positive discharges, which is very different from that of a conventional point plate airgap without a third electrode. The corona discharge and ozone generation characteristics of the plasma reactor with the grounded cylindrical third electrode, such as the corona onset voltage. the breakdown voltage. the corona current. and the amount of output ozone, were influenced significantly by the height of the third electrode. and these characteristics can be controlled by adjusting the height of the third electrode.

코로나방전을 이용한 배기가스중의 Nox제거 (Nox reduction of exhaust gas using corona discharge)

  • 김종달;박재윤;고희석
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권6호
    • /
    • pp.721-726
    • /
    • 1995
  • In this paper, reduction characteristics of NOx gas produced from diesel engine combustion is studied by using pulse corona discharge. Nox concentration of 1900ppm (NO 1870, NO$\sub$2/ 30 ppm, N$\sub$2/ balance gas) was controlled in a fixed quantity of 280ppm, using a flow meter. Reactors are composed of cylinder type. NOx reduction rate is investigated with discharge electrode diameter[0.5,1,3,4.phi.], reactor length [130,300mm], reactor materials[Copper, Poly Vinyl Chloride] and Input voltage[DC, AC, DC Pulse square voltage]. In the result, NOx reduction rate is the best of all in copper reactor, small electrode diameter[0.5.phi.], DC pulse voltage and long reactor[300mm]. Then Teduction rate of NOx is about 93%.

  • PDF