• Title/Summary/Keyword: Controlled Pressure

Search Result 1,576, Processing Time 0.034 seconds

Fluid Infiltration Effect on Breakdown Pressure in Laboratory Hydraulic Fracturing Tests

  • Diaz, Melvin B.;Jung, Sung Gyu;Lee, Gyung Won;Kim, Kwang Yeom
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.389-399
    • /
    • 2022
  • Observations on the influence of the fluid infiltration on the breakdown pressure during laboratory hydraulic fracturing tests, along with an analysis of the applicability of the breakdown pressure prediction for cylindrical samples using Quasi-static and Linear Elastic Fracture Mechanics approaches were carried out. These approaches consider fluid infiltration through the so-called radius of fluid infiltration or crack radius, a parameter that is not a material property. Two sets of tests under pressurization rate controlled and injection rate controlled tests were used to evaluate the applicability of these methods. The difficulty of the estimation of the radius of fluid infiltration was solved by back calculating this parameter from an initial set of tests, and later, the obtained relationships were used to predict breakdown pressures for a second set of tests. The results showed better predictions for the injection rate than for the pressurization rate tests, with average errors of 3.4% and 18.6%, respectively. The larger error was attributed to differences in the testing conditions for the pressurization rate tests, which had different applied vertical pressures. On the other hand, for the tests carried out under constant injection rate, the Linear Elastic Fracture Mechanics solution reported lower errors compared to the Quasi-static solution, with values of 3% and 3.8%, respectively. Moreover, a sensitivity analysis illustrated the influence of the radius of fluid penetration or crack radius and the tensile strength on the breakdown pressure, suggesting a need for a careful estimation of these values. Then, the calculation of breakdown pressure considering fluid infiltration in cylindrical samples under triaxial conditions is possible, although larger data sets are desirable to validate and derive better relations.

Development of Electronically Controlled CVT for Hybrid Passenger Car (하이브리드 승용차용 전자식 무단변속기의 개발)

  • 최득환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.75-81
    • /
    • 1999
  • In this paper, the details of electronically controlled CVT is described , which Kia Motor company recently developed in prototype form for hybrid passenger car. This transmission has two input shafts, one for engine and the other for traction motor. The shaft for traction motor is located at rear side which is extended from primary pulley shaft and connected to traction motor through adapter gear box. Adopting two input system, various driving mode is available such as motor alone driving in hybrid vehicle application. As far as electrohydraulic system concerned , this transmission uses two bleed type variable force solenoids for line pressure and ratio control, and one on-off solenoid for clutch control. Another feature for this transmission is that oil pump for transmission is separate from CVT for supplying oil pressure even at vehicle standstill.

  • PDF

Surgical Treatment of Pulmonary Atresia with VSD - A Report of 2 Cases - (심실중격결손증을 동반한 폐동맥 폐쇄증 [Pulmonary Atresia] 의 외과적 치료-2예 보고-)

  • 강면식
    • Journal of Chest Surgery
    • /
    • v.20 no.4
    • /
    • pp.780-785
    • /
    • 1987
  • Pulmonary atresia with VSD is uncommon congenital anomaly with high mortality in neonatal period. Recently we experienced surgical correction of 2 cases of pulmonary atresia with VSD. The first case was 7-year old female patient and diagnosed as pulmonary atresia with VSD combined PDA. So, total correction was undertaken which consisted of PDA ligation, patch repair of VSD, transannular enlargement of RVOT with woven Dacron vascular graft, and closure of PFO. Postoperative systemic Rt. ventricular and radial artery pressure ratio was 0.44 and her postoperative course was uneventful. The second case was 6-year old male patient diagnosed as pulmonary atresia with VSD and large systemic-pulmonary collateral arteries. There were two large systemic-pulmonary collaterals, one was simply controlled by ligation, but the other was considered to supply Rt. upper lung. So end to side anastomosis was performed to the RVOT patch. Postoperative systolic Rt. ventricular and radial artery pressure ratio was 0.54. During the follow up period he showed clinical picture of Rt. heart failure, which is relatively well controlled with anticongestive therapy.

  • PDF

Development of A New Device for Controlling Infinitesimal Flows inside a Lab-On-A-Chip and Its Practical Application (랩온어칩 내부 미세유동 제어를 위한 새로운 장치의 개발 및 적용)

  • Kim, Bo-Ram;Kim, Guk-Bae;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.305-308
    • /
    • 2006
  • For controlling micro-flows inside a LOC (lab-on-a-chip) a syringe pump or an electronic device for EOF(electro-osmotic flow) have been used in general. However, these devices are so large and heavy that they are burdensome in the development of a portable micro-TAS (total analysis system). In this study, a new flow control system employing pressure chambers, digital switches and speed controllers was developed. This system could effectively control the micro-scale flows inside a LOC without any mechanical actuators or electronic devices We also checked the feasibility of this new control system by applying it to a LOC of micro-mixer type. Performance tests show that the developed control system has very good performance. Because the flow rate in LOC is controlled easily by throttling the speed controller, the flows in complicate microchannels network can be also controlled precisely.

  • PDF

Static Characteristics of Electro-Hydraulic Spring Return Actuator (전기유압식 스프링복귀 액추에이터 정특성)

  • Jung, G.H.
    • Journal of Drive and Control
    • /
    • v.9 no.2
    • /
    • pp.8-14
    • /
    • 2012
  • Electro-hydraulic spring return actuator(ESRA) is utilized for air conditioning facilities in a nuclear power plant. It features self-contained, hydraulic power that is integrally coupled to a single acting hydraulic cylinder and provides efficient and precise linear control of valves as well as return of the actuator to the de-energized position upon loss of power. In this paper, the algebraic equations of ESRA at steady-state have been developed for the analysis of static characteristics that includes control pressure and valve displacement of pressure reducing valve, flow force on flapper as well as its displacement over the entire operating range. Also, the effect of external load on piston deviation is investigated in terms of linear system analysis. The results of static characteristics show the unique feature of force balance mechanism and can be applied to the stable self-controlled mechanical system design of ESAR.

Various Injection Conditions and Fuel Control of an LPG Liquid Injection Engine (다양한 분사조건과 LPG 액상분사엔진의 연료량 제어)

  • Sim Hansub
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.28-35
    • /
    • 2005
  • Fuel injection rate of an injector is affected by various injection conditions such as injection duration, fuel temperature, injection pressure, and voltage in LPG liquid injection systems for either a port-fuel-injection(PFI) or a direct injection(DI) in a cylinder. Even fuel injection conditions are changed, the air-fuel ratio should be accurately controlled to educe exhaust emissions. In this study, correction factor for the fuel injection rate of an injector is derived from the density ratio and the pressure difference ratio. A voltage correction factor is researched from injection test results on an LPG liquid injection engine. A compensation method of the fuel injection rate is proposed for a fuel injection control system. The experimental results for the LPG liquid injection system in a SI-engine show that this system works well on experimental range of engine speed and load conditions. And the fuel injection rate is accurately controlled by the proposed compensation method.

Cyclic liquefaction and pore pressure response of sand-silt mixtures

  • Dash, H.K.;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.83-108
    • /
    • 2011
  • The effect of non-plastic fines (silt) on liquefaction and pore pressure generation characteristics of saturated sands was studied through undrained stress controlled cyclic triaxial tests using cylindrical specimens of size 50 mm diameter and height 100 mm at different cyclic stress ratios and at a frequency of 0.1 Hz. The tests were carried out in the laboratory adopting various measures of sample density through various approaches namely gross void ratio approach, relative density approach, sand skeleton void ratio approach, and interfine void ratio approach. The limiting silt content and the relative density of a specimen were found to influence the undrained cyclic response of sand-silt mixtures to a great extent. Undrained cyclic response was observed to be independent of silt content at very high relative densities. However, the presence of fines significantly influenced this response of loose to medium dense specimens. Combined analyses of cyclic resistance have been done using the entire data collected from all the approaches.

Rubber-liked Biomaterial Experimental Setup based on Nonlinear Elasticity Theory (비선형 탄성이론에 기초한 혈관류 생체재료 실험장치)

  • Kang, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.90-97
    • /
    • 2010
  • In order to understand the biomaterial like the blood vessel of artery, there is a need to quantify the biomechanical behavior of the vessel. Using computer-controlled experimental system, the experiment can acquire data such as inner pressure, axial load, diameter and axial gauge length without contacting the specimen. Rubber-liked material which is similar to passive artery was selected as pseudo-biomaterial. Deformations are measured for pressure-diameter curves. The data were collected and stored online to be used in the feedback control of experimental protocols. Finally, the illustrative data obtained from the experimental system were presented and the system shows that strain invariants are controlled to understand the nonlinear elastic behavior of biomaterial which is involved with strain energy function.

Development of Gap Measuring System Between Strip and Air Knife in Continuous Galvanizing Line

  • Lee, Jang-Myung;Ryu, Young-Kee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.53.5-53
    • /
    • 2001
  • In continuous galvanizing process at steel making plant, coating weight on the surface of strip that pass through air knife is controlled by the pressure at the chamber of air knife and the gap between the nozzle of air knife and strip. The pressure can be easily measured and controlled. But it is difficult to measure the distance between Air knife nozzle and strip, and also difficult to decide how much distance air knife move. Because, the gap between nozzle and strip varies with the height of air knife, intermesh of stabilizing roll and welding of strips that have different thickness. In this research, we developed a gap sensor that can measure the relative distance between Air knife nozzle and strip. And several tests are performed to find optimal condition for application at real plant. We performed test in which the possibility of the sensor to apply ...

  • PDF

Coal pyrolysis behaviors at supercritical CO2 conditions

  • Hakduck Kim;Jeongmin Choi;Heechang Lim;Juhun Song
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2022
  • In this study, a product gas yield and carbon conversion were measured during the coal pyrolysis. The pyrolysis process occurred under two different atmospheres such as subcritical (45 bar, 10℃) and supercritical CO2 condition (80 bar, 35℃). Under the same pressure (80 bar), the atmosphere temperature increased from 35℃ to 45℃ to further examine temperature effect on the pyrolysis at supercritical CO2 condition. For all three cases, a power input supplied to heating wire placed below coal bed was controlled to make coal bed temperature constant. The phase change of CO2 atmosphere and subsequent pyrolysis behaviors of coal bed were observed using high-resolution camcorder. The pressure and temperature in the reactor were controlled by a CO2 pump and heater. Then, the coal bed was heated by wire heater to proceed the pyrolysis under supercritical CO2 condition.