• Title/Summary/Keyword: Control-noise Interaction

Search Result 97, Processing Time 0.02 seconds

Collocation of Sensor and Actuator for Active Control of Sound and Vibration (능동음향진동제어를 위한 센서와 액추에이터의 동위치화 연구)

  • 이영섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.253-263
    • /
    • 2004
  • The problem considered in this paper is about the collocation of sensor and actuator for the active control of sound and vibration. It is well-known that a point collocated sensor-actuator pair offers an unconditional stability with very high performance when it is used with a direct velocity feedback (DVFB) control, because the pair has strictly positive real (SPR) property. In order to utilize this SPR characteristics, a matched piezoelectric sensor and actuator pair is considered. but this pair suffers from the in-plane motion coupling problem with the out-of-plane motion due to the piezo sensor and actuator interaction. This coupling phnomenon limits the stability and performance of the matched pair with DVFBcontrol. As a new alternative, a point sensor and distributed piezoelectric actuator pair is also considered, which provides SPR property in all frequency range when the pair is implemented on a clamped-clapmed beam. The use of this sensor-actuator pair is highly expected for the applications to more practical active control of sound and vibration systems with the DVFB control strategy.

Control of Sound Pressure Inside a Flow Excited Resonator (유동가진 공명기 내부의 음압 제어)

  • Hwang, Cheol-Ho;Park, Jong-Beom
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.196-199
    • /
    • 2005
  • Flow traveling over a cavity opening forms a vortex due to unstable shear layer and induces an aerodynamic pressure excitation from the diffusion of the vortex convecting out of the trailing edge of the opening. The interaction between the excitation force and the cavity response sustains resonance in the resonator(cavity) and locked-in vortex shedding at the leading edge of the opening. The aerodynamic excitation force can be described from the diffusion of the vortex over the trailing edge and the level of its diffusivity is related to the strength of vorticity seeded at the loading edge. In this study, the control scheme of the internal pressure oscillation was proposed from regulating the vorticity at the leading edge by use of an oscillating spoiler. It was found that the relative motion between the spoiler and the air mass at the cavity opening influenced vorticity strength and the control was achieved by direct feedback of the cavity pressure fluctuation to the actuator.

  • PDF

Impedance Control for a Vehicle Platoon System (차량 집단 주행 시스템을 위한 임피던스 제어)

  • Yi, Soo-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.6
    • /
    • pp.295-301
    • /
    • 2001
  • In this paper, an impedance control using a serial chain of spring-damper system is proposed for a vehicle platoon. For safety of the vehicle platoon, it is required to regulated the distance between each vehicle at a preassigned value even in case of vehicle model error, or moise in the measurement signal. Since the spring-damper system is physically stable and widely used to represent the interaction with the uncertain environments, it is appropriate to the longitudinal control of the vehicle platoon. By considering the nonholonomic characteristics of the vehicle motion, the lateral control and the longitudinal control of the vehicle paltoon are unified in the proposed algorithm. Computer simulation is carried out to verify the robustness against the uncertainties such as the vehicle model error and the measurement noise.

  • PDF

Control of Sound Pressure inside a Flow Excited Cavity by Regulation of Vorticity Shedding (와류진동 조절에 의한 유동가진 공동 내부의 음압 제어)

  • Park, Jong-Beom;Hwang, Cheol-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1223-1229
    • /
    • 2007
  • Flow traveling over a cavity opening forms a vortex due to unstable shear layer and induces an aerodynamic pressure excitation from the diffusion of the vortex convecting out of the trailing edge of the opening. The interaction between the excitation force and the cavity response sustains resonance in the resonator(cavity) and locked-in vortex shedding at the leading edge of the opening. The aerodynamic excitation force can be described from the diffusion of the vortex over the trailing edge and the level of its diffusivity is related to the strength of vorticity seeded at the leading edge. In this study, the control scheme of the internal pressure oscillation was proposed from regulating the vorticity at the leading edge by use of an oscillating spoiler. It was found that the relative motion between the spoiler and the air mass at the cavity opening influenced vorticity strength and the control was achieved by direct feedback of the cavity pressure fluctuation to the actuator.

Automatic Berthing Control of Ship Using Adaptive Neural Networks

  • Nguyen, Phung-Hung;Jung, Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.31 no.7
    • /
    • pp.563-568
    • /
    • 2007
  • In this paper, an adaptive neural network controller and its application to automatic berthing control of ship is presented. The neural network controller is trained online using adaptive interaction technique without any teaching data and off-line training phase. Firstly, the neural networks used to control rudder and propeller during automatic berthing process are presented. Secondly, computer simulations of automatic ship berthing are carried out in Pusan bay to verify the proposed controller under the influence of wind disturbance and measurement noise. The results of simulation show good performance of the developed berthing control system.

Development of an Intelligent Active Trailing-edge Flap Rotor to Reduce Vibratory Loads in Helicopter (헬리콥터의 진동하중 저감을 위한 지능형 능동 뒷전 플랩 로터 제어 시스템 개발)

  • Lee, Jae-Hwan;Choe, Jae-Hyeok;Shin, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.492-497
    • /
    • 2011
  • Helicopter uses a rotor system to generate lift, thrust and forces, and its aerodynamic environment is generally complex. Unsteady aerodynamic environment arises such as blade vortex interaction. This unsteady aerodynamic environment induces vibratory aerodynamic loads and high aeroacoustic noise. Those are at N times the rotor blade revolutions (N/rev). But conventional rotor control system composed of pitch links and swash plate is not capable of adjusting such vibratory loads because its control is restricted to 1/rev. Many active control methodologies have been examined to alleviate the problem. The blade using active control device manipulates the blade pitch angle at arbitrary frequencies. In this paper, Active Trailing-edge Flap blade, which is one of the active control methods, is designed to modify the unsteady aerodynamic loads. Active Trailing-edge Flap blade uses a trailing edge flap manipulated by an actuator to change camber of the airfoil. Piezoelectric actuators are installed inside the blade to manipulate the trailing edge flap.

  • PDF

Prediction and Control of the Propogation of Underground Train Systems-induced Ground Vibration: State of the Art (지하철 차량운행에 의한 진동영향 평가: State of the Art)

  • Lee, In-Mo;Choe, Sang-Sun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.06a
    • /
    • pp.73-82
    • /
    • 1993
  • Ground-borne vibration is one of the main causes of environmental impact from subway systems. The vibration resulting from track-train interaction is transuutted through the tunnel structure and the surrounding ground to adjacent buildings. This paper provides a summary of proposed noise and vibration criteria, a review of the ground vibration propagation mechanism and the theoretical isolation effectivenesss of each of the following underground transit systems : track, tunnel and vehicle itself.

  • PDF

Prediction and Control of Noise and Vibration in Buildings from Underground Rail Systems (지하철 차량운행에 의한 인접구조물의 소음.진동영향 평가에 관한 연구)

  • 이인모;최상순;박보리나라
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.77-86
    • /
    • 1994
  • The vibration resulting from track-train interaction is transmitted through the tunnel structure and the surrounding ground to adjacent buildings. This paper provides a review of the ground vibration propagation mechanism and the theoretical isolation effectiveness of each transit systems. Moreover, predictive vibration values estimated from various models are compared with measured results performed in Seoul Metropolitan Subways and evaluate the applicability of those models.

  • PDF

An Adaptive Autopilot for Course-keeping and Track-keeping Control of Ships using Adaptive Neural Network (Part II: Simulation Study)

  • Nguyen Phung-Hung;Jung Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.119-124
    • /
    • 2006
  • In Part I(theoretical study) of the paper, a new adaptive autopilot for ships based on Adaptive Neural Networks was proposed. The ANNAI autopilot was designed for course-keeping, turning and track-keeping control for ships. In this part of the paper, to show the effectiveness and feasibility of the ANNAI autopilot and automatic selection algorithm for learning rate and number of iterations, computer simulations of course-keeping and track-keeping tasks with and without the effects of measurement noise and external disturbances are presented. Additionally, the results of the previous studies using Adaptive Neural Network by backpropagation algorithm are also showed for comparison.

An Adaptive Autopilot for Course-keeping and Track-keeping Control of Ships using Adaptive Neural Network (Part II: Simulation study)

  • NGUYEN Phung-Hung;JUNG Yun-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.23-28
    • /
    • 2005
  • In Part I (theoretical study) of the paper, a new adaptive autopilot for ships based on Adaptive Neural Networks was proposed. The ANNAI autopilot was designed for course-keeping, turning and track-keeping control for ships. In this part of the paper, to show the effectiveness and feasibility of the ANNAI autopilot, computer simulations of course-keeping and track-keeping tasks with and without the effects of measurement noise and external disturbances are presented. Additionally, the results of the previous studies using Adaptive Neural Network by backpropagation algorithm are also showed for comparison.

  • PDF