• Title/Summary/Keyword: Control flow error detection

Search Result 20, Processing Time 0.023 seconds

Design of Intelligent Servocontroller for Proportional Flow Control Solenoid Valve with Large Capacity (지능형 대용량 비례유량제어밸브 서보컨트롤러 설계)

  • Jung, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • As the technologies of electronic device have advanced these days, most of mechanical systems are designed with electronic control unit to take advantage of control parameter adaption to operating conditions and firmware flexibilities as well. On-board diagnosis, which detects the system malfunction and identifies potential source of error with its own diagnostic criteria, and fail-safe that can switch the mode of operation in view of recognized error characteristics enables easy maintenance and troubleshooting as well as system protection. This paper dealt with the development of diagnosis and fail-safe function for proportional flow control valve. All type of errors related to valve control system components are investigated and assigned to a specific hexadecimal codes. Cumulative error detection algorithm is applied in order for the sensitivity and reliability to be appropriate. Embedded simulator which runs simultaneously with system program provides the virtual error simulation environment for expeditious development of error detection algorithm. The diagnosis function was verified both with solenoid valve and embedded simulator test and it will enhance the valve control system monitoring function.

A Cost-effective Control Flow Checking using Loop Detection and Prediction (루프 검출 및 예측 방법을 적용한 비용 효율적인 실시간 분기 흐름 검사 기법)

  • Kim Gunbae;Ahn Jin-Ho;Kang Sungho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.91-102
    • /
    • 2005
  • Recently, concurrent error detection for the processor becomes important. But it imposes too much overhead to adopt concurrent error detection capability on the system. In this paper, a new approach to resolve the problems of concurrent error detection is proposed. A loop detection scheme is introduced to reduce the repetitive loop iteration and memory access. To reduce the memory overheat an offset to calculate the target address of branching node is proposed. Performance evaluation shows that the new architecture has lower memory overhead and frequency of memory access than previous works. In addition, the new architecture provides the same error coverage and requires nearly constant memory size regardless of the size of the application program. Consequently, the proposed architecture can be used as an cost effective method to detect control flow errors in the commercial on the shelf products.

Separate Signature Monitoring for Control Flow Error Detection (제어흐름 에러 탐지를 위한 분리형 시그니처 모니터링 기법)

  • Choi, Kiho;Park, Daejin;Cho, Jeonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.225-234
    • /
    • 2018
  • Control flow errors are caused by the vulnerability of memory and result in system failure. Signature-based control flow monitoring is a representative method for alleviating the problem. The method commonly consists of two routines; one routine is signature update and the other is signature verification. However, in the existing signature-based control flow monitoring, monitoring target application is tightly combined with the monitoring code, and the operation of monitoring in a single thread is the basic model. This makes the signature-based monitoring method difficult to expect performance improvement that can be taken in multi-thread and multi-core environments. In this paper, we propose a new signature-based control flow monitoring model that separates signature update and signature verification in thread level. The signature update is combined with application thread and signature verification runs on a separate monitor thread. In the proposed model, the application thread and the monitor thread are separated from each other, so that we can expect a performance improvement that can be taken in a multi-core and multi-thread environment.

A Configurable Software-based Approach for Detecting CFEs Caused by Transient Faults

  • Liu, Wei;Ci, LinLin;Liu, LiPing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1829-1846
    • /
    • 2021
  • Transient faults occur in computation units of a processor, which can cause control flow errors (CFEs) and compromise system reliability. The software-based methods perform illegal control flow detection by inserting redundant instructions and monitoring signature. However, the existing methods not only have drawbacks in terms of performance overhead, but also lack of configurability. We propose a configurable approach CCFCA for detecting CFEs. The configurability of CCFCA is implemented by analyzing the criticality of each region and tuning the detecting granularity. For critical regions, program blocks are divided according to space-time overhead and reliability constraints, so that protection intensity can be configured flexibly. For other regions, signature detection algorithms are only used in the first basic block and last basic block. This helps to improve the fault-tolerant efficiency of the CCFCA. At the same time, CCFCA also has the function of solving confusion and instruction self-detection. Our experimental results show that CCFCA incurs only 10.61% performance overhead on average for several C benchmark program and the average undetected error rate is only 9.29%. CCFCA has high error coverage and low overhead compared with similar algorithms. This helps to meet different cost requirements and reliability requirements.

Control Flow Checking at Virtual Edges

  • Liu, LiPing;Ci, LinLin;Liu, Wei;Yang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.396-413
    • /
    • 2017
  • Dynamically checking the integrity of software at run-time is always a hot and difficult spot for trusted computing. Control-flow integrity is a basic and important safety property of software integrity. Many classic and emerging security attacks who introduce illegal control-flow to applications can cause unpredictable behaviors of computer-based systems. In this paper, we present a software-based approach to checking violation of control flow integrity at run-time. This paper proposes a high-performance and low-overhead software control flow checking solution, control flow checking at virtual edges (CFCVE). CFCVE assigns a unique signature to each basic block and then inserts a virtual vertex into each edge at compile time. This together with insertion of signature updating instructions and checking instructions into corresponding vertexes and virtual vertexes. Control flow faults can be detected by comparing the run-time signature with the saved one at compile time. Our experimental results show that CFCVE incurs only 10.61% performance overhead on average for several C benchmark programs and the average undetected error rate is only 9.29%. Compared with previous techniques, CFCVE has the characteristics of both high fault coverage and low memory and performance overhead.

An Analysis of Position Detection Error of Sensorless Controller and Modeling of Drive System for Interior Permanent Magnet BLDC Motors (영구자석 매입형 BLDC 전동기 센서리스 제어시스템의 위치검지 오차분석 및 모델링)

  • Lee, Dong-Myung;Kim, Hag-Wone;Cho, Kwan-Youl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • This paper proposes the modeling of sensorless drive system using 120 degree conduction method for IPM (Interior Permanent Magnet) BLDC motors and analyzes characteristics of the terminal voltage that is used to detect the rotor position. This paper shows that the ZCP (Zero-Crossing Point) of the measured terminal voltage used In sensorless control is ahead of that of the back EMF of IPM motors because they have a saliency. This research also analyzes that the amount of position detection error is related to saliency, rotor speed, and load condition. In addition, this paper shows that motors have bigger advance angles than we have expected because the ZCP of terminal voltage precedes the actual ZCP, and under operation conditions such as heavy load and high speed it may generate abnormal currents that flow toward opposite direction after phase current becomes zero.

A Novel Water Surface Detection Method Based on Correlation Analysis for Rectangular Control Area (직사각형 검사영역의 상관도 분석을 통한 수면위치 탐색 방법)

  • Lee, Chan Joo;Seo, Myoung Bae;Kim, Dong Gu;Kwon, Sung Il
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.12
    • /
    • pp.1227-1241
    • /
    • 2012
  • In this study, a novel water surface detection method was proposed. In the method water surface is detected by analysis on correlation coefficients obtained from rectangular control areas of the same vertical position in two successive images including both water surface and staff gauge. Four methods respectively based on threshold, peak, slope and variance ratio, are used to identify water surface from vertical distribution of correlation coefficient. In addition, swaying correction algorithm and statistical filtering are applied to minimize outliers caused by positional image mismatch. Images taken from 28 different sites during low flow were tested to evaluate the method. Mean relative error to eye measurement was approximately from 3.4 to 5.7 cm. As long as water surface moves, this method can be used to improve image stage gauge by supplementing the previous water surface detection method.

Kalman Filter Estimation of the Servo Valve Effective Orifice Area for a Auxiliary Power Unit (보조 동력장치용 서보밸브 유효 오리피스 면적의 칼만필터 추정)

  • Zhang, J.F.;Kim, C.T.;Jeong, H.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Flow rate is one of the important variables for precise motion control and detection of the faults and fluid loss in many hydraulic components and systems. But in many cases, it is not easy to measure it directly. The orifice area of a servo valve by which the fluid flows is one of key factors to monitor the flow rate. In this paper, we have constructed an estimation algorithm for the effective orifice area by using the model of a servo valve cylinder control system and Kalman filter algorithm. Without geometry information about the servo valve, it is shown that the effective orifice area can be estimated by using only displacement and pressure data corrupted with noise. And the effect of the biased sensor data and system parameter errors on the estimation results are discussed. The paper reveals that sensor calibration is important in accurate estimation and plausible parameter data such as oil bulk modulus and actuator volume are acceptable for the estimation without any error. The estimation algorithm can be used as an useful tool for detecting leakage, monitoring malfunction and/or degradation of the system performance.

  • PDF

A Design of RF Digital Remote Water Gauge with Counterflow Detection Capability (역류 흐름 검출기능을 갖는 무선 디지털 원격 수도검침기 설계)

  • Nam, Jong-Hyun;Lee, Jae-Min
    • Journal of Digital Contents Society
    • /
    • v.16 no.1
    • /
    • pp.97-104
    • /
    • 2015
  • The conventional 1 Hall sensor-type water gauge has some defects that it can not detect counterflow and low-speed flow of water, and it also generates power consumption during even sleep mode. In this paper, a low-power consumption wireless digital remote water gauge with a counterflow detection capability is proposed. The proposed water gauge detects the direction and amount of water flow by using the three Hall sensors placed at $120^{\circ}$ intervals with 8-year national standard life durability. The water gauge with three Hall sensors works without error regardless of water speed does not generate power dissipation during sleep mode by presented reading algorithm for bew water gauge. The proposed water gauge is designed to send its ID, current time and counting value to repeater or central control center with specified frequency by RF Module.

Flow Control Throughput Performance Improvement of Adaptive Packet Length Allocation Scheme in Wireless Data Communication System (무선 데이타 통신 시스템에서 적응패킷길이할당방식을 이용한 흐름제어 기능 개선)

  • 정기호;박종영;금홍식;이상곤;류흥균
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.11-18
    • /
    • 1995
  • Error detection in ARQ(Automatic Repeat Request) protocols is very important in wireless data communication systems. The throughput efficiency of ARQ protocols can be improved by dynamically adapting the protocol packet length so that it approaches the optimum value for throuhput efficiency. In this paper, a simple and novel adaptive packet length allocation method is proposed which transmits the packets with variable length by dyanmically estimating the channel codition. The simulation results show that the average of throughput is improved by 315.4% in the stop-and-wait protocol, 41.4% in the go-back-N protocol and 155.9% in the selective repeat protocol respectively. And the throughput performances of adaptive packet length allocation method approximately approach the theoritically optimal throughput performances.

  • PDF