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Abstract 
 

Transient faults occur in computation units of a processor, which can cause control flow errors 
(CFEs) and compromise system reliability. The software-based methods perform illegal 
control flow detection by inserting redundant instructions and monitoring signature. However, 
the existing methods not only have drawbacks in terms of performance overhead, but also lack 
of configurability. We propose a configurable approach CCFCA for detecting CFEs. The 
configurability of CCFCA is implemented by analyzing the criticality of each region and 
tuning the detecting granularity. For critical regions, program blocks are divided according to 
space-time overhead and reliability constraints, so that protection intensity can be configured 
flexibly. For other regions, signature detection algorithms are only used in the first basic block 
and last basic block. This helps to improve the fault-tolerant efficiency of the CCFCA. At the 
same time, CCFCA also has the function of solving confusion and instruction self-detection. 
Our experimental results show that CCFCA incurs only 10.61% performance overhead on 
average for several C benchmark program and the average undetected error rate is only 9.29%. 
CCFCA has high error coverage and low overhead compared with similar algorithms. This 
helps to meet different cost requirements and reliability requirements. 
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1. Introduction 

Transient faults are increasing due to improving circuit integration, reducing voltage levels, 
increasing transistor counts and reducing noise margins [1-5].  Although it does not destroy 
the internal structure of the integrated circuit, it can affect the operation of the program by 
changing the state of the processor or the memory cell, thus endangering the reliability of the 
system.  

The CFEs are caused by instruction address errors, opcode corruption or transforms between 
non-jump instruction and jump instruction that occurred at program counter, bus, and address 
calculation unit. The CFEs account for about 30% to 70% of the total errors [6,7]. 

The CFEs detection technology can be divided into hardware-based methods [8-10], mixed 
software-hardware methods [11-13], and software-based control flow detection technology. 
The former requires additional hardware components to detect CFEs.  

The research methods of control flow errors caused by transient faults can be divided into 
hardware methods, mixed software-hardware methods and software methods. 

By code redundancy, the latter assigns different static signature to each basic block and 
provides signature operation instructions and comparison instructions. When the program is 
running, a dynamic signature is calculated according to the current control flow and static 
signature stored in precursor basic block. Finally, the control flow is judged to be normal or 
not according to comparison results between dynamically generated signature and pre-stored 
signature. The latter has some advantages over the former, that is, software-based methods do 
not require auxiliary hardware, have no special requirements of the operating system, have 
good expansibility and are conducive to the continuous exploration and repeated experiments 
of the subject. 

The control flow errors of inner-block is a class of errors, i.e., instructions in the basic block 
are not executed from beginning to end, and some of them are skipped. The error occurrence 
of inner-block has a low probability than inter-block. 

The probability of CFEs occurring within block is proportional to the instruction number. 
The smaller basic block contains fewer instructions, and the larger basic block contains more 
instructions. In addition, the algorithm for detection also increases the number of instructions. 
This increases the probability that CFEs will occur within a block. Checking for errors within 
basic blocks is essential. 

Although software methods require no additional auxiliary devices, have no special 
requirements on the operating system, have good expansibility, and are conducive to the 
continuous exploration and repeated experiments of the subject. But those bring a large amount 
of time and space overhead due to the large number of redundant instructions which still have 
a huge impact on the program performance. 

Our algorithm includes the basic part and the optimization part. The basic part of the 
algorithm is designed to be more favorable to probe the CFEs of inner-block. For improving 
fault tolerance efficiency, the optimization part is designed to reduce checkpoints and 
reconfigure detection regions by criticality analysis and configurability of block size. Our 
contributions are as following: 
• The algorithm overcomes the problems of high cost and low detection rate of existing 

detection methods in the detection of inner-block CFEs, by extracting time invariants, 
assigning unique signature and updates signatures at virtual edges of the control flow 
graph. 

• Our algorithm solves the confusion problem with virtual edges. 
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• The algorithm implemented configurability of algorithm by analyzing the criticality of 
each region and tuning the detecting granularity. Configurability ensures that the number 
of redundant instructions decreases and tolerance efficiency increases when the 
application requirements are met. 

The remainder is arranged as following. Section 2 gives the related works on software-based 
methods. Section 3 gives our methods. Section 4 analyzed the detection capabilities of CFEs. 
The effectiveness of the proposed method is verified by experiments in section 5 and finally 
conclusions is given in section 6. 

2. Previous Work 
The control-flow checking technology implemented in software has no special requirements 
on hardware and operating system but inserts some extra instructions into the normal 
instructions of the program. Compared to hardware or hybrid implementation technologies, 
software implementation technologies are low cost and flexible, requiring only software 
modification to meet changes in demand, and can be used directly on commercial finished 
devices with low cost, low power consumption and high performance. 

With the goal of detecting CFEs, software-based approaches are implemented by inserting 
signatures. Clearly, these methods differ from each other lies in the representation of 
signatures and the design of detection instructions. The detection overhead and detection 
performance also depend on these two factors. 

CFCSS [14] method assign signature based on relationship of predecessor. This algorithm 
gives a signature si  to a basic block. For each basic block, signatures and XOR value D 
between the current basic block and predecessor are inserted in advance. The XOR value 
between dynamic signature and D is calculated when the program is executed into a destination 
block. If the result is the same as the signature of current basic block, the control flow is correct. 
Vice versa indicates that the control flow is wrong. These methods [15-18] and CFCSS work 
in the same way. 

Relationship signatures for control flow checking (RSCFC) [19] encodes basic blocks in 
binary. These bits contain information of successors blocks.  When the program runs into a 
basic block, the algorithm checks whether the bit corresponding to the current basic block is 
zero. When the representative number is zero, it means that the program has an illegal jump, 
and the control flow jump error is detected. Otherwise, it means that the program control flow 
jumps normally. This encoding can represent a limited blocks number. These methods [20-22] 
and RSCFC work in the same way. 

ECCA [23] inserts assertions into each basic block for comparing and updating. Because of 
the multiplication and division operations used in assertions, this comes at 
the expense of increased performance overhead. DSM [24] inserts detection instructions to 
overcome the detection vulnerability of existing algorithms, but the cost is very high, resulting 
in a three-fold decrease in program performance and a four-fold increase in storage 
consumption. CEDA [25] has the highest fault tolerance efficiency among all known 
algorithms. Although the algorithm can detect all control flow errors between basic blocks 
with low performance overhead, it fails to solve the problem of control flow error detection 
within basic blocks and between processes. In addition, like other existing control flow 
detection algorithms, CEDA does not have configurability and self-protection ability of fault 
tolerance mechanism. Control flow checking at virtual edges (CFCVE) [26] inserts a virtual 
vertex into each edge at compile time.  This together with insertion of signature updating 
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instructions and checking instructions into corresponding vertexes and virtual vertexes. 
CFCVE has some improvements in performance and overhead. 

3. Methodology 
Existing signature monitoring based inter-block control flow error detection algorithm not 
only has expensive overhead, but also lack the mechanism of self-protection. To overcome 
these problems, CCFCA algorithm is proposed, which is an inter-block control flow detection 
algorithm. The proposed algorithm assigns a unique integer as a signature for each basic block. 
To generate virtual edge, CCFCA inserts a virtual basic block into the jump branch according 
to the mapping relationship between the edge of the control flow graph and the program branch. 
The signature updating operation is transferred to the virtual edge by inserting signature update 
instructions into the virtual basic block. In order to improve fault tolerance efficiency, CCFCA 
divides the target program into regions and analyzes their importance. The detection 
instructions are inserted into nodes in important region. The detection instructions are inserted 
into entry and exit basic blocks in unimportant region, and the signature generation instructions 
are inserted into the remaining basic blocks. 

3.1 Preliminaries 
Here are the definitions that are relevant to our article. 
Definition 1 (Basic block) Let B represent the basic block. B is an instruction set which 
executed sequentially, consisting of a unique entry instruction and a unique exit instruction.  
Definition 2 (Control flow graph) Let CFG = <B, E> denote the ordinal pair which is 
composed of the basic block set B and the directed edge set E. 
Definition 3 (Vertex/Node) Each basic block is a vertex or Node. 
Definition 4 (Virtual Vertex/Node) Virtual Vertex is essentially edge that exist between two 
vertices/Nodes. 
Definition 5 (Internode CFEs) All CFEs occur inside the basic block. 
Definition 6 (Intranode CFEs) All CFEs occur between the basic blocks. 
Definition 7 (Region of code) Code region is represented by R, which is essentially a 
collection of basic blocks. 
Definition 8 (Vulnerability of code) Let V(Ri ) denote the vulnerability, then it can be 
expressed by the formula as:   

V(Ri)=
T(Ri)

TMT(R)
 × F(Ri)                                              (1) 

where Ri is a region of code, T(Ri) is the time it takes to execute all the code in Ri, F(Ri) is the 
execution frequency of code in region, TMT (R) is the average running time. The above 
information can be obtained from the program profile information. 
Definition 9 (Importance of code) Let I(Ri) be the importance of code, that is, the transient 
faults occur in Ri, which can cause control flow errors. It can be expressed by the formula as: 

 I(Ri) = V(Ri) × PSDC(Ri)                                          (2) 
where V(Ri) is the vulnerability of code in region Ri, PSDC(Ri) is the probability of silent data 
corruption. Those can be obtained through error injection experiments.   
Definition 10 (Relative Importance of code) Let RI(Ri) be the relative importance of code in 
Ri, where I(Ri) is the importance of code in Ri, I(R) is numerically the sum importance of 
all code regions. It can be expressed by the formula as: 
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 RI(Ri) = I(Ri)
I(R)

                                                      (3) 

3.2 Signature generation 
In the previous section, the CFEs detection methods based on software lie in the representation 
of signatures and the design of detection instructions. 

A well-designed signature approach can reduce unnecessary memory overhead and 
performance overhead. For example, in RSCFC algorithm, a basic block needs to occupy one 
bit of signature. When the number of basic blocks exceeds the machine word length, multiple 
registers must be used to store the same signature data, which increases the complexity of 
signature allocation and signature operation overhead. The signature of CCFCA algorithm 
consists of three parts, which are signature field, entry/exit field, and checking field respectively. 
The signature field is a unique binary number. Entry/exit field contains two bits to indicate that 
the control flow has entered or left the basic block. The entry/exit signature bit is set to 11 when 
the program executes inside the basic blocks and to 00 when the program executes outside the 
basic blocks. Its benefit for detecting instruction itself. The signature checking bit represents 
the parity of hamming weight in the parity checking field. If the hamming weight is odd, the 
checking bit is 1; otherwise, it is 0. If the machine word length is N, the maximum effective 
length of the signature is N-3. For example, the maximum value is 261 for a 64-bit machine. 
This representation enhances the presentation of the signature. 

3.3 Detection principle 
Detection techniques based on software rely on inserting redundant instructions. CCFCA uses 
the global signature register (GSR) to hold the runtime signature G associated with the current 
node. Assume that Gi is the value of GSR when the control flow enters Vi. Then the signature 
function f (G, di) = G ⊕ di is responsible for updating the value of G at run time. If Gi = si, then 
the control flow is normal. If Gi ≠ si, then the control flow is abnormal. Suppose there is an edge 
brsd between Vs and Vd. That is, there is a jump between Vs and Vd, where s stands for source 
and d for destination. Let dd = ss ⊕ sd be the difference of signature and is pre-stored in Vd. The 
value in the general signature register G was  Gs= ss before the edge brsd  appeared. After edge 
brsd appears then the value of the register changes to  Gd = f ( Gs, dd). If Gd = sd, then the control 
flow is normal. If Gd ≠ sd, then the control flow is abnormal. As shown in the Fig. 1, CCFCA 
can detect abnormal jump between V1 and V4 based on the above principle. 
However, there may be confusion between the predecessor basic block and successor basic 
block. As shown in the Fig. 2, both V1 and V3 can reach V5. If the signature XOR difference is 
set to d5 = s1⊕ s5, then the value of G is  G5 = f ( G1, d5) = G1⊕ d5 = s5 when br15 appears. If  
br35 appears, s3 ≠ s1 in V5. So the value of G becomes  G5 = f ( G3, d5) ≠ s5. Given s3 = s1, 
then the illegal jump from node 1 to node 4 and illegal jump from node 3 to node 2 are not 
detected. Adjustment signature D is introduced to solve this problem.  
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Fig. 1. Control flow detection                              Fig. 2. Confusion can be resolved by adding D 

 
But the confusion in Fig. 3 cannot be solved by adjustment signature. This situation can be 

summed as pred (Vi) ≠ pred (Vj) and pred (Vi) - pred (Vj) ≠ ∅.   If deg- (Vi) > 1 for all pred 
(Vi ), choose Vi  as the base block and set D=0, then d5 = s1⊕ s5  , D1 = s1⊕ s1 , D2 = s1⊕ 
s2, D3 = s1⊕ s3, d6 = s3⊕ s6, G = G6  ≠  s6. Legal control flow from V3 to V6 is misjudged as 
illegal control flow.  

 
 

 
 

  
 
 
 
 
 
 
 

Fig. 3. Confusion can’t be resolved by adding D 

In the control flow error detection algorithm based on signature analysis, a legitimate branch 
corresponds to an edge in the edge set E. The essence of algorithm is to determine whether the 
edge corresponding to the current branch belongs to the legitimate edge set E. CCFCA 
embedded a virtual basic block in each edge of the CFG. Since the control flow of the original 
edge and the virtual edge are equivalent and the virtual basic block does not change the 
semantics of the program, the edge after inserting the virtual basic block can still be considered 
as an edge logically. The mechanism of updating signature with virtual base blocks more 
accurately expresses the relationship between the predecessor node and successor node.  

CCFCA updates signature in virtual basic block by inserting signature updating instructions 
and detects CFEs by inserting comparison instruction in basic block. A signature comparison 
instruction br (G ≠ Entry (si)), updating instructions G=G ⊕ Exit (si ) and G = G ⊕ Entry (sj ) are 
inserted in the virtual basic block, where  and  indicate that the entry/exit bits 
of signature were 0 or 1. CCFCA uses a dedicated register to store G. The value of G is si before 
Vj flows to the virtual basic block Vij and the entry/exit bits of signature were 1. The first 
updating instruction G= G ⊕ Exit (si )  is executed. The value of G is updated G 
=  G ⊕ Entry (si )  = Entry (si )  ⊕ Entry (si )  = 0. Then the second updating instruction G 
= G ⊕ Entry (sj ) is executed. The value of G becomes sj and the Entry/Exit bits were 1. Next 
the jump instruction is executed and program is transferred to the header of basic block Vj . The 

)( isEntry )( isExit
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comparison instruction br (G ≠ Entry (sj)) error is executed. In the absence of control-flow error, 
the signature value in G is equal to sj, and if the value in G is not equal to sj, then the control 
flow is transferred to an exception program after CFEs occurs. As shown in Fig. 4, V13 is 
inserted between V1 and  V3. If V1 jumps to V3 along a legitimate branch then the value of G is 
updated to Entry (s3 ). G = Entry (s3 ) when the checking instruction in node V3 is executed. 
At this point, you can verify that the program control flow is normal. Given V1 jumps to V4, the 
value of G in V4 is not equals to Entry (s4 ). At this point, checking instruction can detect the 
control flow error. 
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1V
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Fig. 4. An example of CCFCA 

 
CFEs may bypass the detection mechanism by directly skipping the signature comparison 

instruction. Therefore, the detection mechanism should be able to detect the abnormal behavior 
that bypasses the detection mechanism. The Entry/Exit bits were set to 0 and 1 respectively 
according to the location of control flow. The status of the Entry/Exit bits is only updated within 
the block by inserting two instructions located in header and tail respectively. The first 
Entry/Exit bits instruction precedes the detection instruction. The second Entry/Exit bits 
instruction precedes the jump instruction. Errors skipped the first and second instructions are 
detected. The process of changing the status of Entry/Exit bits from 0 to 1 is driven by 
EntryFactor (si ) and ExitFactor (si ). Transit (si ) indicates that the first and second bits are 1 
and 0, respectively.  

As shown in Table 1, the following conditions should be met by EntryFactor (si ) 
and ExitFactor (si ) respectively. Condition 1 ensure that the update operation only updates the 
target data bit in the Entry/Exit bits; Condition 2 ensure that all data bits in the signature field 
are unaffected; Condition 3 ensure the correctness of parity check bit. 
 

Table 1. Condition table of EntryFactor (si ) and ExitFactor (si ) 
Concept Condition 

EntryFactor (si ) (1) The first bit and the second bit are 1 and 0 respectively. 
(2) All the bits are 0 in signature field  
(3) Parity checking is 1 

ExitFactor (si ) (1) The first bit and the second bit are 0 and 1 respectively. 
(2) All the bits are 0 in signature field  
(3) Parity checking is 1 

 
When detecting control flow errors by redundant instructions, control flow errors may occur 

in redundant instructions themselves. The parity of hamming weight is consistent with 
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checking bit in G without SEU. There are two signature updating instructions and two signature 
updating instructions inside per virtual node and node respectively. The result is that these 
signature updating instructions may not execute in the expected order. The parity of hamming 
weight is consistent with checking bit due to XOR operation. 

CCFCA realizes control flow error detection by redundant instruction. Suppose the number 
is n. The more redundant instructions, the lower the detection efficiency. Therefore, it is 
necessary to find a balance between efficiency and redundant instruction. If the running time 
of basic block Bi is TBi  i=1,⋯,n. If the running time of redundant instruction Ci added to each 
basic block is TCi i=1,⋯,n. Then total running time of the program is 𝑇𝑇 = ∑ (𝑇𝑇𝐵𝐵𝑖𝑖 + 𝑇𝑇𝐶𝐶𝑖𝑖)

𝑛𝑛
𝑖𝑖=1 .  

Suppose the average current and voltage are I and V respectively. Then the power 
consumption of the program is E = P × T, where P = I × V. The execution time and performance 
cost of the control flow detection algorithm are proportional to the size of the program itself 
and the size of redundant instruction added. A program running on a computer typically 
consumes most of its execution time in partial code which is relatively important code. Then 
the definition 7-10 related to configurability of CCFCA are given in section 3.1. Different parts 
of the program have different SDC error probability. If RI(Ri) ≥ ε, the region Ri is taken as 
relative importance region for importance threshold ε. The remaining region is unimportant 
region.  

CCFCA adds control flow detection instructions (including signature generation instructions, 
signature comparison instructions, and signature preparation instructions) to each basic block 
and virtual basic block in the important regions. For the relatively unimportant region, only the 
unique entrance and exit basic blocks of this area are configured with signature detection 
instructions, while the remaining basic blocks are only equipped with signature generation 
instructions. For relatively unimportant areas, this only increases the error detection delay of 
the control flow appropriately, saves time and space overhead. 

4.  Detection capabilities of CCFCA  
The CFEs may occurs between or within basic blocks. The illegal CFEs are grouped into six 
types.   

Type 1 Illegal branch jumps from nodes or virtual nodes to the second instruction of a node 
head. 

Type 2 Illegal branch jumps from nodes or virtual nodes to any middle instruction of a node. 
Type 3 Illegal branch jumps from node or virtual nodes to the tail instruction of a node. 
Type 4 Illegal branch leaves the node from any instruction of a node head. 
Type 5 Illegal branch leaves the node from any middle instruction of a node. 
Type 6 Illegal branch leaves the node from any end instruction of a node. 
Case 1-1 If the illegal branch jumps from the first instruction of virtual node Vi where Vi ∈

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(Vj), then the value in signature register is 0 before the illegal branch jump. The signature 
comparison instruction br (G ≠ Transit (sj)) error in Vj is executed after the illegal branch jump. 
since the value is not equal to Transit (sj ) at run time. The illegal jump is detected and program 
running into a handling mechanism. Given illegal branch jumps from the second instruction of 
virtual node Vi , then signature register value is Entry (sj)  before the illegal branch. The 
signature comparison instruction br (G ≠ Transit (sj)) error in Vj is executed after the illegal 
branch jump. Since the signature value is not equal to Transit (sj ) at run time. The illegal 
branch is detected and program runs into a handling mechanism.  
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Case 1-2 If the illegal branch jumps from the arbitrary instruction of node Vi  where Vi
∉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(Vj), then the register values can only be one of Entry (si), Transit (si ) and Exit (si). 
Because none of the run-time signatue values are equal to Transit (sj ) . The detection 
mechanism transfers the control flow to error handling routines. If Vi is a virtual basic block 
and Vk ∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(Vi), then the run-time signature in the signature register before an illegal branch 
jump may have a value of 0 and Entry (sk). The register value does not equal is Transit (sj ). 
So the llegal jump starts from the arbitrary instruction of basic block Vi can be detected. Based 
on the above analysis, the type 1 can be detected. 

Case 2-1 If there is an illegal jump from virtual basic block (or basic block) Vi to basic block 
Vj, and Vi ∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(Vj). The case is similar to 1-1. The difference is that the illegal branch skips 
the detection instruction at the head of the node and the illegal jump is detected by the detection 
instruction. 

Case 2-2 If there is an error from virtual node (or node) Vi to Vj where Vi∉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(Vj). The 
case is similar to 1-2. The difference is that the illegal branch skips the detection instruction at 
the head of the node and the illegal jump is detected by the detection instruction at the end of 
the node. Case 2 can be detected. 

Case 3-1 The proof is the same as type 2. 
    Case 4-1 If there is an illegal branch from virtual node (or node) Vi to node Vj where Vj ∈
𝑠𝑠𝑠𝑠𝑠𝑠(Vi), then the value of register is Transit (si ). If the illegal branch jumps to the initiation of 
Vj, then the G=G ⊕ Exit (si ) and G=G ⊕ Entry (sj ) are executed. The control flow is then 
sequentially executed to the head of Vk  which is the successor of Vj . When the second 
instruction of Vk  is executed, the dynamic signature will be compared with Transit (sk). Illegal 
jumps are detected when the comparison results are not equal. The scenario where an illegal 
branch jumps to the other two instructions is similar to the detection scenario where it jumps 
the first instruction. 

Case 4-2 If there is an illegal branch jumps from virtual node Vi  to node Vj  where Vj
∉𝑠𝑠𝑠𝑠𝑠𝑠(Vi), then the value of register is Transit (si). The instruction br (G ≠ Transit (sj)) error 
is executed when the illegal branch jumps to the head of Vj. The value of register G updated to 
G=Transit (si ) ⊕ Transit (sj ). At this point, the detection mechanism detects the control flow 
error. The instruction br (G ≠ Exit (sj)) error is executed when the illegal branch jumps to the 
middle or end of Vj. The value of register G is not equal to Exit(sj). At this point, the detection 
mechanism detects the illegal control flow. If Vj is a virtual basic block and its successor is Vk, 
then the instruction G=G ⊕ Exit (si ) and the instruction G = G ⊕ Entry (sj ) are executed after 
the illegal branch jump to the first instruction of Vj. And the run-time signature will compared 
with signature Transit (sk ). The CFE is detected. The illegal branch jumps to the second or the 
third instruction is similar to the first instruction. Based on the above analysis, the type 4 can 
be detected. 

Case 5-1 The proof is the same as type 4. 
       Case 6-1 If there is an illegal jump from virtual basic block (or basic block) Vi to basic 
block Vj , Vj ∈ 𝑠𝑠𝑠𝑠𝑠𝑠(Vi) , Vk ∈ 𝑠𝑠𝑠𝑠𝑠𝑠(Vj)  and the value of register is Exit (si) , then 
G=G ⊕ Exit (si )  and G =  G ⊕ Entry (sj ) are executed and the value of G is updated to 
Entry (si ). The control flow enters the Vk and the value of G equals to Entry (sj ). Therefore, 
the branch is considered legal. If the illegal branch jumps to the second instruction of Vj, then 
the instruction G = G ⊕ Entry (sj ) is executed. And then the control flow goes into Vk. 
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The value of G becomes G=Exit (si ) ⊕ Entry (sk ) ⊕ EntryFactor (sk ). The illegal branch is 
detected because of the instruction br (G ≠ Transit (sk)) error. The illegal branch jumps to the 
third instruction is similar to the second instruction. 

Case 6-2 If Vj  is a basic block and Vj∉𝑠𝑠𝑠𝑠𝑠𝑠(Vi) , then the value of G equals to 
G=Exit (si ) ⊕ Transit (sk) after the instruction br (G ≠ Transit (sj)) error. At this point, the 
illegal branch is detected. If Vj is a virtual basic block and Vk ∈ 𝑠𝑠𝑠𝑠𝑠𝑠(Vj), then G=G ⊕ Exit (si ) 
and G = G ⊕ Entry (sj ) are executed after the illegal branch jumps to the first instruction of 
Vi. The G will compare with Transit (sk) after the second instruction of Vk is executed. At this 
point, the illegal branch is detected. The rest is similar to those described above. Based on the 
above analysis, the type 6 can be detected. CCFCA can detect all CFEs between basic blocks. 

5. Experimental evaluation 

5.1 The experiment method 
The experiments used in this section are reinforcement experiment, contrast experiment and 
fault tolerance efficiency experiment commonly used in this research field. The experimental 
environment, tools and benchmark programs used in our experiments are common in such 
studies. The algorithms CFCSS, RSCFC, CEDA, CFCVE and BGCFC used for comparison 
are also representative algorithms in the latest findings. 

The validation of fault-tolerant technology usually uses some benchmark programs for fault 
injection. This paper uses five benchmark programs including Matrix Multiplication (MM), 
Traveling Saleman Problem(TSP), Quick Sort(QS), Shuffle and Hanoi which are widely used 
in other similar algorithms. 

The main technical steps in our experiments include source code compilation into assembly 
language, redundant code insertion, compilation and simulation. In our experiment, the 
evaluation is using the SimpleScalar simulator 3.0 [27] developed by Todd Austin. The 
SimpleScalar emulator is deployed on target machines with an ARM920T processor, 16G of 
SDRAM and operation system of Linux kernel 2.6.32. All experiments in this section use open 
source software SDCC [28] to compile programs into assembly code. The preprocessor is 
written by Flex++ lexical analyzer [29]. The simulator tests the program after interpreter and 
connector generate the code. PINFI [30] is used for error injection at the assembly level.  

5.2 Performance evaluation 
The core of the reinforcement experiment is the selective instruction redundancy technology, 
signature analysis and control flow detection technology. Without reinforcement mechanism, 
we test the system detection, running time, detection of mechanism, result correctness. Then 
with CCFCA, we test the system detection, running time, detection of mechanism, result 
correctness again. By comparing the change of system detection, running time, detection of 
mechanism, result correctness, we can see the effectiveness of CCFCA. 

Firstly, a certain number of benchmark programs are selected, and the selected benchmark 
programs are copied into two copies. The original programs and the reinforced programs are 
compiled and the set of target instructions and operands for fault injection is selected. PINFI is 
used to implement fault injection in assembly language layer. Like other literatures, the 
experiment in this section is based on SEU. 5000 injections were performed. According to the 
detection result of CFEs, the injection results are divided into five types including SD, T, D, IR 
and CR. Table 2 lists these types. 
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Table 2. Detection result of injection 

Type Annotation 
SD (System Detection) The fault is detected by system 
T (Timeout) The program is hung or exceeded the running time 
D (Detected) The fault is detected by detection mechanism 
IR (Incorrect Result) The fault is not detected but the output is wrong 
CR (Correct Result) The fault is not detected but the output is correct 
 
As shown in Table 3, timeout failures accounted for 5.0%, 3.37%, 1.54%, 5.2%, and 7.5% 

of the total number of tests in each benchmark program, respectively. In the third row of the 
table. Faults with incorrect results accounted for 14.0%, 37.8%, 35.6%, 52.5% and 19.5% of 
the total number of tests in each benchmark program, respectively. The fourth row in the table 
shows that despite the failure, the program still runs to the end and produces the correct results. 
The benign failure accounted for 26.0%, 33.63%, 31.43%, 19.0% and 60.0% of the total 
experiments of various benchmark programs, respectively. The fifth line in the table refers to 
the system faults detected by the operating system, accounting for 55.0%, 46.0%, 37.0%, 43.5% 
and 39.0% of the total experiments of various benchmark programs, respectively. As shown in 
the last row of the table, the proportion of unsafe failures generated by the failure injection 
experiment is 19.0%, 41.17%, 37.14%, 57.7% and 27.0%, respectively, whose value is equal 
to the sum of the timeout faults and the result error faults. The original program did not add an 
additional detection mechanism during the failure injection experiment. Therefore, the D of 
each original program in line 6 is 0. 

In addition to these, the difference between the result of the benchmark programs are 
determined by the type of the programs. For example, jumping intensive algorithms have small 
basic blocks and a lot of redundant instructions. The calculation intensive algorithms have 
bigger basic blocks and smaller redundant instructions than jumping intensive algorithms. The 
benchmark program has a high probability of producing correct results without detection 
mechanism. The reason is that some faults are shielded by the program itself. After analysis, it 
can be seen that the fault can be shielded by the program itself for two reasons :(1) when the 
fault is injected to the target address of the condition branch, if the jump operation does not 
occur, the injected fault will not affect the program results;(2) the injection failure may cause 
some instructions of the program to be repeated or skipped. If the instructions are repeated or 
skipped without changing the program semantics, the results of the program will not be affected. 

After CCFCA reinforcement, timeout failures accounted for 1.0%, 2.2%, 12.0%, 1.70% and 
1.75% of the total number of tests in each benchmark program, respectively. In the third row 
of the table. Faults with incorrect results accounted for 2.0%, 7.94%, 1.1%, 5.7% and 5.2% 
respectively. The fourth line adopts the algorithm in this chapter as a detection mechanism, and 
the faults detected account for 29.4%, 36.6%, 34.3%, 37.8% and 39.9% of the total number of 
experiments in each benchmark program, respectively. The correct result failures in the fifth 
row of the table accounted for 47.0%, 31.2%, 42.0%, 33.2% and 30.2% respectively. The 
failures detected by the operating system in the sixth row accounted for 20.6%, 20.6%, 19.3%, 
19.7% and 21.0% respectively. The faults not secured accounts for 3.0%, 9.94%, 13.1%, 7.4% 
and 6.95% respectively. Its value is equal to the sum of incorrect result fault and timeout fault 
percentage. The average undetectable error was 8.078%. 

CCFCA significantly increases the fault coverage value and enhances the fault coverage 
ability. CCFCA based on the mapping relation uses the virtual node to generate virtual edge, 
transfers the signature updating operations to a virtual edge, so accurately expresses the 
relationship between precursor node and successor node, simplifies the control graph algorithm 
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and reduces the test cost. In addition, the algorithm further carries on the key area analysis. 
These can further reinforce the benchmark programs without a huge number of instructions. 
Coverage of faults is the sum of D, T, CR, and SD. In Fig. 5, S and R2 represent the coverage 
of fault of benchmark program without and with reinforced by CCFCA respectively. The CF 
of MM, TSP, QS, Shuffle and Hanoi was 86%, 62.92%, 64.4%, 47.5% and 80.5% respectively 
before reinforcement. After the reinforcement, the CF becomes 98%, 92.6%, 98.9%, 94.3% and 
94.8% respectively.  

 Some injection errors were not detected resulting in FNS. As show in Fig. 6, IR is equal to 
the sum of T and IR. The FNS of MM, TSP, QS, Shuffle and Hanoi was 19.0%, 41.7%, 37.14%, 
57.7% and 27.0% respectively. These benchmarks have been reinforced so that FNS becomes 
3.0%, 9.94%, 13.1%, 7.4% and 6.95% respectively. 

 
Table 3. Original programs without reinforcement 

 MM TSP QS Shuffle Hanoi 

T (%) 5.0/1.0 3.37/2.2 1.54/12.0 5.2/1.70 7.5/1.75 

IR (%) 14.0/2.0 37.8/7.94 35.6/1.1 52.5/5.7 19.5/5.2 

CR (%) 26.0/47.0 33.63/31.2 31.43/42.0 19.0/33.2 60.0/30.2 

SD (%) 55.0/20.6 46.0/20.6 37.0/19.3 43.5/19.7 39.0/21.0 

D (%) 0/29.4 0/36.6 0/34.3 0/37.8 0/39.9 

Total (%) 100 100 100 100 100 

Fault not secured (%) 19.0/3.0 41.17/10.14 37.14/13.1 57.7/7.4 27.0/6.95 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The comparison of CF                                       Fig. 6. The comparison of IR 
 
 

The next experiment aims to compare multiple detection algorithms BGCFC, CFCSS, CEDA, 
CFCVE, RSCFC and CCFCA in terms of T, IR, CR, SD and D. In this part of the experiment, 
data comparison, histogram display and analysis of the characteristics of various algorithms are 
used to make a comprehensive comparison between algorithms. 

Fig. 7 shows the detection performance of algorithms BGCFC, CFCSS, CEDA, CFCVE, 
RSCFC and CCFCA in terms of T, TR, D, CR and SD. S, B, C1, C2, C3, R1 and R2 in each 
set of bar respectively represent the original , BGCFC, CFCSS, CEDA, CFCVE, RSCFC and 
CCFCA. The CF of original program, BGCFC, CFCSS, CEDA, CFEVE, RSCFC and CCFCA 
is 68.264%, 92.08%, 87.6%, 86.94%, 91.688%, 91.678% and 95.615% respectively. 
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 Fig. 7. Detection performance comparison of five algorithms 

 
The T of original program, BGCFC, CFCSS, CEDA, CFEVE, RSCFC and CCFCA is 

4.522%, 2.834%, 5.3%, 5.32%, 2.734%, 2.76% and 3.052% respectively. The SD of original 
program, BGCFC, CFCSS, CEDA, CFEVE, RSCFC and CCFCA is 29.73%, 20.714%, 24.2%, 
23.02%, 20.412%, 18.808% and 20.24% respectively. The CR of original program, BGCFC, 
CFCSS, CEDA, CFEVE, RSCFC and CCFCA is 34.012%, 28.022%, 33.74%, 33.08%, 28.4%, 
29.494% and 36.72% respectively. The D of original program, BGCFC, CFCSS, CEDA, 
CFEVE, RSCFC and CCFCA is 0, 40.51%, 23.82%, 25.52%, 48.148%, 40.616% and 35.6% 
respectively. Even without detection algorithms, the failure coverage of the original program 
averaged 68.2%. The reason is that part of the fault is shielded by the program itself, the jump 
does not occur, instructions are repeated or skipped without changing the program semantics. 

CFCVE algorithm adopts virtual node to represent branch jump relation instead of writing 
branch jump relation into signature and effectively solves the non-detection zone and 
performance overhead problem. However, the self-protection mechanism of CFCVE results in 
additional instruction overhead. Each basic block of CEDA is assigned an entry signature and 
an exist signature. In order to overcome the conflict of the sector nodes, CEDA designs the 
same exit signature for each precursor node. But it greatly increases the complexity of signature 
allocation.  CEDA algorithm overcomes the detection vulnerability of CFCSS algorithm, it does 
not have the ability to detect control flow within blocks and between processes. When the 
benchmark program contains a basic block with a large instruction size, the IR and FNS will 
increase. RSCFC algorithm does not have the ability to detect control flow errors in blocks. 
RSCFC encodes the jump relation between the basic blocks into the signatures and assigns the 
position information signature to each basic block. At runtime, RSCFC performs logic 
operation on dynamic signature and position information signature to detection. RSCFC solves 
the sector conflict well with high error coverage. However, coding the jumping relation between 
the basic blocks into the signature makes the signature length exceed the machine byte length. 
To solve this problem, block coding is required for basic blocks, which increases the algorithm 
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complexity and detection cost. The node is divided into two sub-nodes to convert the 
equivalence, so that the control flow error between the sub-blocks, to achieve the purpose of 
reducing the error type of the control flow. BGCFC has time complexity O(N!). When the 
number of nodes is large and the jump is complex. The BGCFC algorithm overcomes the 
problem of excessive overhead of RSCFC but inherits the advantage of high CF. The basic 
principle of CCFCA algorithm combines the advantages of CFCSS and CFCVE by region 
importance analysis and overcomes the confusion by virtual basic block. Since the condition 
branch does not occur, the IR of CFCSS and CCFCA have been significantly reduced. 

The number of redundant instructions is related to the program type. Branch jump intensive 
program has small basic block and jumps frequently. Operation intensive program has large 
node. The instructions inserted in each node is basically the same, the more basic blocks 
obtained, the more instruction inserted.  

As show in Fig. 8, BGCFC divides each node into two sub-nodes. This avoids the case where 
the starting node of a legitimate jump branch is the same basic block as the destination node. 
BGCFC algorithm assigns consecutive integer signature for predecessor of each basic block. 
When the number of predecessor nodes is 1, two detection instructions are inserted into the 
basic block; when the number of predecessor nodes is greater than 1, up to 8 detection 
instructions are inserted into the basic block. RSCFC assigns jump relation and location 
information to each node of the benchmark programs. When the node number is larger than the 
machine expression number, multiple registers are introduced to store the same signature data. 
Therefore, RSCFC assigns at least three special registers and seven detection instructions to 
each basic block. RSCFC algorithm and BGCFC algorithm have the same performance 
overhead when the node number is less than the machine expression number. RSCFC algorithm 
has a slightly lower performance overhead than BGCFC algorithm when the node number is 
larger than the machine expression number. For example, the additional overhead of BGCFC 
algorithm in QS, TSP and Hanoi programs are 22.3%, 21.5% and 43.7% respectively, which 
are lower than the 32.7%, 33.2% and 42.31% of RSCFC algorithm. CFCVE algorithm 
expresses branch jump relation through virtual edge and inserts 4 instructions in each basic 
block and 3 instructions in each virtual basic block to complete the detection. On average, the 
algorithm needs to insert 5.5 instructions on average to complete the detection task. CFCVE 
has less performance overhead than BGCFC in computationally intensive programs. For 
example, the BGCFC algorithm in the MM program has an additional 17.4% performance 
overhead, and the CFCVE algorithm has an additional 16.0% performance overhead. BGCFC 
algorithm in Shuffle program added an additional 43.21% of the performance overhead, 
CFCVE algorithm added an additional 33.14% of the performance overhead. CCFCA 
algorithm divides the importance of the code area and inserts 3-5 instructions on average. 
CEDA algorithm inserts 4 instructions in each node. However, the insertion number of CCFCA 
algorithm is still less than CFCSS algorithm. Therefore, the performance overhead of CCFCA 
algorithm is lower than that of CFCSS algorithm and CEDA algorithm. For example, CFCSS, 
CEDA, and CCFCA algorithms have an additional performance overhead of 13.7%, 14.0%, 
and 10.5%, respectively, in the program MM and Shuffle. Additional performance overhead in 
the Shuffle was 23.0%, 24.1%, and 20.5% respectively. 
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Fig. 8. Overhead comparison of five algorithms                      Fig. 9. Comparison of EFT 
 
 

Efficiency of fault tolerance (EFT) combines the fault coverage (CF) with performance 
Overhead (PO). It can be used to measure control flow detection methods. The formula of EFT 
is expressed as follows: 
 

                                          EFT =  1
(1−CF)⨯PO

 , PO =  Ta
Tb
⨯ 100% − 1                                    (4) 

 
Here Ta and Tb respectively represent the time executed the after reinforcement and the time 

taken to execute the program before reinforcement. In MM, TSP, QS, Shuffle and Hanoi, the 
average performance overhead of BGCFC, CFCSS, CEDA, CFCVE, RSCFC and CCFCA was 
29.624%, 26.38%, 27.04%, 34.398%, 35.0212 and 22.8%, respectively. Therefore, as shown in 
Fig. 9, the fault tolerance efficiency of the six detection algorithms BGCFC, CFCSS, CEDA, 
CFCVE, RSCFC and CCFCA is 42.6217%, 29.2948%, 28.3171%, 34.9752%, 34.3116% and 
100.02% respectively. Obviously, CCFCA algorithm proposed in this paper has the largest 
value of fault tolerance efficiency and the best comprehensive detection performance, which is 
higher than other control flow detection algorithms. 

 

6. Conclusions and Future Research 
This paper presents CCFCA algorithm. The algorithm is configurable by an assessment of the 
importance of code. For critical regions, program blocks are divided according to space-time 
overhead and reliability constraints, so that protection intensity can be configured flexibly. For 
other regions, signature detection algorithms are used only in the first and last nodes of the 
region. It is benefit for improving the fault-tolerant efficiency of the CCFCA. At the same time, 
CCFCA also has the function of solving confusion and instruction self-detection. Our 
experimental results show that CCFCA has high fault tolerance and low overhead. This helps 
to meet different cost requirements and reliability requirements. 

Further work is to eliminate the inaccessible path and generate the control flow graph 
accurately. It helps optimize CCFCA to reduce redundancy. 
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