• Title/Summary/Keyword: Control flow

Search Result 7,455, Processing Time 0.037 seconds

Control Algorithm of Hybrid System for Feeder Flow Mode Operation in Microgrid (마이크로그리드에서 하이브리드 시스템의 Feeder Flow Mode 운영을 위한 제어 알고리즘)

  • Moon, Dae-Seong;Seo, Jae-Jin;Kim, Yun-Seong;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Active power control scheme for distributed generation in microgrid consists of feeder flow control and unit power control. Feeder flow control is more useful than the unit power control for demand-side management, because microgrid can be treated as a dispatchable load at the point of common coupling(PCC). This paper presents detailed descriptions of the feeder flow control scheme for the hybrid system in microgrid. It is divided into three parts, namely, the setting of feeder flow reference range for stable hybrid system operation, feeder flow control algorithm depending on load change in microgrid and hysteresis control. Simulation results using the PSCAD/EMTDC are presented to validate the inverter control method for a feeder flow control mode. As a result, the feeder flow control algorithm for the hybrid system in microgrid is efficient for supplying continuously active power to customers without interruption.

Development of Flow Control Block for Hydraulic System of Tunnel Boring Machine (터널 굴착기 유압시스템용 유량 제어 블록 개발)

  • Lee, Jae-Dong;Lim, Sang-Jin
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.929-935
    • /
    • 2018
  • This paper develops a flow control block for a hydraulic system of a tunnel boring machine. The flow control block is a necessary component to ensure stability in the operation of the hydraulic system. In order to know the pressure distribution of the flow control block, the flow analysis was performed using the ANSYS-CFX. It was confirmed that the pressure and flow rate were normally supplied to the hydraulic system even if one of the four ports of the flow control block was not operated. In order to evaluate the structural stability of the flow control block, structural analysis was performed using the ANSYS WORKBENCH. As a result, the safety factor of the flow control block is 1.54 and the structural stability is secured.

A Study on a Direct-Type Proportional Flow Control Valve Utilizing Flowforces (유체력을 이용한 직동식 비례 유량 조절 밸브에 관한 연구)

  • 배상기;현장환;이정오
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.68-75
    • /
    • 1998
  • A one-stage direction and flow control valve was studied theoretically and experimentally. A direction and flow control valve maintains a constant flow rate by changing the spool-orifice area under the variation of valve pressure drop, since the spool-orifice area is varied by the action of flowforces on the spool. A direction and flow control valve has the advantage of simple and low-cost structure compared to a conventional flow control valve utilizing a pressure regulating spool which regulates the pressure drop caused by flow through the metering orifice. The static and dynamic characteristics of a one-stage direction and flow control valve was analyzed. Experimental results on the flow control characteristics of the manufactured valve show satisfactory agreement with simulation results.

  • PDF

Liner Analysis of IMV Proportional Flow Control Valve Static Characteristics (IMV 비례 유량제어밸브 정특성 선형해석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, as the environmental regulation for earth moving equipment has been tightened, advanced systems using electronic control have been introduced for energy savings. An IMV(Independent Metering Valve), which consists of four 2-way valves, is one of the electro-hydraulic control systems that provides more flexible controllability and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully realize an IMV, a two-stage bi-directional flow control valve which can regulate the large amount of flow in both directions, should be developed in advance. A simple design that allows proportional flow control to apply the pilot pressure from the current-controlled solenoid to the spring loaded flow control spool and thus valve displacement, is proportional to the solenoid current. However, this open-loop type valve is vulnerable to flow force which directly affects the valve displacement. Force feedback servo of which the position loop is closed by the feedback spring which interconnects the solenoid valve and flow control spool, could compensate for the flow force. In this study, linearity for the solenoid current input and robustness against load pressure disturbance is investigated by linear analysis of the static nonlinear equations for the IMV proportional flow control valve with feedback spring. Gains of the linear system confirm the performance improvement with the feedback spring design.

Static Analysis of Dedicated Proportional Flow Control Valve for IMV (굴삭기 IMV용 비례 유량제어밸브 정특성 해석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.39-47
    • /
    • 2018
  • Recently, as environmental regulations for earth-moving equipment have been tightening, advanced systems such as electronic control, have been introduced for energy savings. An IMV (Independent Metering Valve) consisting of four 2-way valves, is an electro-hydraulic control systems that provides more flexible controllability, and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully maximize use of an IMV, the bi-directional flow control valve that can regulate a large amount of flow in both directions, should be adopted. The hydraulic circuit of an IMV applied to an excavator from an overseas construction equipment company, reveals the flow control valve with the compound of proportional solenoid valve for first stage, and 2-way spool valve for the second stage. Moreover, the two spools are interconnected by a feedback spring, presumed to compensate for flow force acting on the second stage spool. This paper addresses the static analysis of flow control valve in an IMV to investigate the improvement of robustness, against flow force by the feedback spring. From the steady-state analysis of flow control valve model, it can be concluded that the feedback spring facilitates maintaining linearity of spool displacement for control input, and relatively constant flow for load disturbance.

A Direct Injection-mixing Total-flow-control Boom Sprayer System (주입식 총유량 자동제어방식 분관 방제기의 개발)

  • 구영모
    • Journal of Biosystems Engineering
    • /
    • v.21 no.2
    • /
    • pp.155-166
    • /
    • 1996
  • A direct injection sprayer was designed using the concepts of injection mixing and total flow control, flowrate-based system compensating for the variation of forwarding speed. A metered rate, proportionally to the actual diluent flow rate, of a tracer chemical was injected directly into the diluent stream. The injection of chemical may improve the precision and safety of chemical application process. The control system was evaluated for the variables of the control interval, tolerances and sensitivities of flow regulation valve and injection pump. Performance of the system was assessed as that the response time of flow rate, response time of injection rate, absolute steady state error, and the coefficient of variance(C.V.) of concentration were 8.5 and -0.53 seconds, 0.067 lpm(0.8%) and 3.15%, respectively, at optimal parameters of control interval of 1.0 sec, fast sensitivity of flow regulation valve, medium sensitivity of injection pump and medium tolerance of flow rate. Performance of the system can be improved by increasing the sensitivity of flow regulating valve and employing a high resolution velocimeter, such as Doppler radar.

  • PDF

Precise control flow protection based on source code (소스코드 기반의 정밀도 높은 실행 흐름 보호 기법)

  • Lee, JongHyup;Kim, Yong Seung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.5
    • /
    • pp.1159-1168
    • /
    • 2012
  • Control Flow Integrity(CFI) and Control Flow Locking(CFL) prevent unintended execution of software and provide integrity in control flow. Attackers, however, can still hijack program controls since CFI and CFL does not support fine-granularity, context-sensitive protection. In this paper, we propose a new CFI scheme, Source-code CFI(SCFI), to overcome the problems. SCFI provides context-sensitive locking for control flow. Thus, the proposed approach protects software against the attacks on the previous CFI and CFL schemes and improves safety.

Development of automatic flow control system based on LabView (LabView를 이용한 자동유량제어 시스템의 개발)

  • Kang, Tae-Won;Kim, Du-Seob;Ann, Sung-Gyu
    • Journal of Engineering Education Research
    • /
    • v.19 no.2
    • /
    • pp.3-7
    • /
    • 2016
  • A flow control system was designed and fabricated to control the flow rate of liquid through the pipe. This control system was composed of hardwares and software, hardwares as controller, gate valve, orifice meter and data aquisition board and software as National instruments Labview program. Control of flow rate was executed by adjusting the pneumatic valve located at the center of pipe line based on the control signal generated by LabView PID control algorithm, which converts analog signal measured by pressure difference of orifice to digital signal to adjust pneumatic valve. For the controller setup Ziegler-Nichols tuning technique was applied and control performances were investigated for not only the disturbance but also the set point changes. Developed system showed good control performances in flow control enough to use as teaching tool of feedback control theory and practice in university, and also as industrial application.

A study on the application of the intelligent control algorithms to the flow control system (유량제어계통에 대한 지능형 제어 알고리즘 적용연구)

  • 김동화;조일인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1792-1795
    • /
    • 1997
  • It is difficulte to control in the flow system because there are many disturbance. So it is impossible to control delicately sometimes by PI or PID. In this paper, we study on the application of intellignet control algorithms such as 2DOF PID control, neural network, Fuzzy contro, Relay feedback to the flow control system. the resultings are 2DOF-PID control is more good response.

  • PDF

Design and Implementation of a Mail Browser that can control Data-Flow on the Web (Web에서 데이터 흐름제어가 가능한 Mail Browser의 설계 및 구현)

  • Park, Gyu-Seok;Kim, Seong-Hu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2752-2763
    • /
    • 1999
  • On account of the text based mail system has it's limit to support multimedia applications, GUI based mail system platform was developed to control document flow and automatize information process. The existing mail systems's to transmit data must need additional functions to automate document flow control. The platform of document flow control is deeply related to EDMAS(Electronic document Management System), workflow, Electronic Banking, DMS(Document Management System) automation, so it needs an ability to control proper data and document correctly. To resolve this problems, we are need of browser and engine to design work flow and to control documents flow. In this paper, we develope a mail browser to design document flow by follow user's requirements. This system can generate executive script code for document flow, and we add the function of workflow and process management to automatize the document flow in this system, and then we implement this Data flow engine.

  • PDF