• Title/Summary/Keyword: Control efficiency

Search Result 9,326, Processing Time 0.04 seconds

A Study on High Efficiency Vector Controlled Induction Motor Drive System (고효율 벡터제어 유도전동식 구동 시트템에 관한 연구)

  • Kim, Heung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1174-1182
    • /
    • 1990
  • A hgih efficiency and good dynamic performance drive system of an induction motor is presented in this paper using vector control technique. If the induction motor is driven under light loads with rated flux, the iron loss is excessively large compared with the copper loss, resulting in poor motor efficiency. High efficiency drive of an induction motor can be achieved by adjusting the flux level which leads the total motor loss to be a minimum value. Generally reducing the flux degrades the dynamic performance, but the dynamic performance of the proposed system is also maintained high. If the d-axis is coincident with rotor flux phasor in synchronous rotating reference frame, the stator current can be decoupled as flux component and torque component. At steady state, the developed motor torque is proportional to the product of the flux and torque component. The combination of the two components minimizing the motor loss could be found with numerical method. As the procedure to obtain the optimal combination is too hard, it is found experimentally. The system block diagram is suggested for maximum efficiency control. The proposed system is studied through digital simulation and verified with experiment. The experimental results show the possiblity of a high efficiency drive with good dynamic performance of maximum efficiency control.

  • PDF

A Power Control Scheme of a Fuel Cell Hybrid Power Source

  • Song, Yu-Jin;Han, S.B.;Park, S.I.;Jeong, H.G.;Jung, B.M.;Kim, G.D.;Yu, S.W.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.183-187
    • /
    • 2008
  • This paper describes a power control scheme to improve the performance of a fuel cell battery hybrid power source for residential application. The proposed power control scheme includes a power control strategy to control the power flow of the fuel cell hybrid power system and a digital control technique for a front-end dc-dc converter of the fuel cell. The power control strategy enables the fuel cell to operate within the high efficiency region defined by the polarization curve and efficiency curve of the fuel cell. A dual boost converter with digital control is applied as a front-end dc-dc converter to control the fuel cell output power. The digital control technique of the converter employs a moving-average digital filter into its voltage feedback loop to cancel the low frequency harmonic current drawn from the fuel cell and then limits the fuel cell output current to a current limit using a predictive current limiter to keep the fuel cell operation within the high efficiency region as well as to minimize the fuel cell oxygen starvation.

  • PDF

High-efficiency Operation of Switched Reluctance Generator based on Current Waveform Control

  • Li, Zhenguo;Yu, Siyang;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.120-126
    • /
    • 2013
  • The main aim of this paper is to expound high-efficiency operation of Switched Reluctance Generator (SRG) based on the current waveform. For this purpose, theoretical analysis of the copper loss and iron loss of the system is done first. Then, necessary simulation is done to find the variation trend of the copper loss and iron loss with the variation of the current waveform at the same output power. Finally, the best current waveform which can make the system operate with high efficiency is obtained by considering the influence of these two kinds of loss. In order to verity the simulation results, the experimental platform of DC motor-SRG is built and the modified angle position control (APC) method which can specify the current shape optionally is presented. By comparing the system efficiency at the three kinds of typical current waveform, the correctness and feasibility of the theory is verified. The proposed method is simple, reliable, and easy to achieve.

Energy-efficiency enhancement and displacement-offset elimination for hybrid vibration control

  • Makihara, Kanjuro
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.193-207
    • /
    • 2012
  • New insights into our previously proposed hybrid-type method for vibration control are highlighted in terms of energy analysis, such as the assessment of energy efficiency and system stability. The hybrid method improves the bang-bang active method by combining it with an energy-recycling approach. Its simple configuration and low energy-consumption property are quite suitable especially for isolated structures whose energy sources are strictly limited. The harmful influence of the external voltage is assessed, as well as its beneficial performance. We show a new chattering prevention approach that both harvests electrical energy from piezoelectric actuators and eliminates the displacement-offset of the equilibrium point of structures. The amount of energy consumption of the hybrid system is assessed qualitatively and is compared with other control systems. Experiments and numerical simulations conducted on a 10-bay truss can provide a thorough energy-efficiency evaluation of the hybrid suppression system having our energy-harvesting system.

Eco-Speed Control Strategy for Automated Electric Vehicles on Urban Road (도심환경에서의 전기자동차 친환경 자율주행 속도제어 전략)

  • Heo, Seulgi;Jeong, Yonghwan;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.1
    • /
    • pp.32-37
    • /
    • 2018
  • This paper proposes autonomous speed control strategy for an Electric Vehicle on urban road. SNU campus road is used to reperesent urban road situation. Motor efficiency of driving on campus circulation road can be improved by controlling velocity properly. Given information of campus road, especially slope of road, acceleration is selected from candidate, considering consumed power, human factor and driving time. To apply urban situation, preceding vehicle is also considered. With preceding vehicle, acceleration is defined according to clearance and relative velocity. Acceleration is bounded in normal range. Proposed acceleration control method is activated with proper velocity range for campus circulation road. With acceleration control, motor efficiency becomes better than driving with constant vehicle. To evaluate the performance of proposed acceleration controller, simulation study is conducted via MATLAB.

Robust Adaptive Control for Efficiency Optimization of Induction Motors (유도전동기의 효율 최적화를 위한 강인 적응제어)

  • Hwang, Young-Ho;Park, Ki-Kwang;Kim, Hong-Pil;Han, Hong-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1505-1506
    • /
    • 2008
  • In this paper, a robust adaptive backstepping control is developed for efficiency optimization of induction motors with uncertainties. The proposed control scheme consists of efficiency flux control(EFC) using a sliding mode adaptive flux observer and robust speed control(RSC) using a function approximation for mechanical uncertainties. In EFC, it is important to find the flux reference to minimize power losses of induction motors. Therefore, we proposed the optimal flux reference using the electrical power loss function. The sliding mode flux observer is designed to estimate rotor fluxes and variation of inverse rotor time constant. In RSC, the unknown function approximation technique employs nonlinear disturbance observer(NDO) using fuzzy neural networks(FNNs). The proposed controller guarantees both speed tracking and flux tracking. Simulation results are presented to illustrate the effectiveness of the approaches proposed.

  • PDF

A Review on New Non-hybrid Technologies to Improve Energy Efficiency of Construction Machineries (건설기계의 에너지 효율 제고를 위한 비-하이브리드 신기술에 관한 리뷰)

  • Joh, Joong Seon
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.53-66
    • /
    • 2016
  • New non-hybrid approaches to improve energy efficiency of construction machineries are reviewed in this paper. Hydraulic systems are classified into four classes according to Backe's classification and commercially promising new technologies are carefully chosen in each class. IMV, 3-Line CPR, Closed Circuit Displacement Control of Differential Cylinder, and Throttle-less Secondary Control are chosen as representative non-hybrid new technologies. Key principle of each technology is explained and representative references which run through each technology are selected. Advantages and weaknesses of each technology are discussed and compared from the view point of construction machinery manufacturers.

In/Output Matching Network Based on Novel Harmonic Control Circuit for Design of High-Efficiency Power Amplifier (고효율 전력증폭기 설계를 위한 새로운 고조파 조절 회로 기반의 입출력 정합 회로)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • In this paper, a novel harmonic control circuit has been proposed for the design of high-efficiency power amplifier with Si LDMOSFET. The proposed harmonic control circuit haying the short impedances for the second- and third-harmonic components has been used to design the in/output matching network. The efficiency enhancement effect of the proposed harmonic control circuit is superior to the class-F or inverse class-F harmonic control circuit. Also, when the proposed harmonic control circuit has been adapted to the input matching network as well as the output matching network, the of ficiency enhancement effect of the proposed power amplifier has increased all the more. The measured maximum power added efficiency (PAE) of the proposed power amplifier is 82.68% at 1.71GHz band. Compared with class-F and inverse class-F amplifiers, the measured maximum PAE of the proposed power amplifier has increased in $5.08{\sim}9.91%$.

Simulation Analysis of Control Variates Method Using Stratified sampling (층화추출에 의한 통제변수의 시뮬레이션 성과분석)

  • Kwon, Chi-Myung;Kim, Seong-Yeon;Hwang, Sung-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.133-141
    • /
    • 2010
  • This research suggests a unified scheme for using stratified sampling and control variates method to improve the efficiency of estimation for parameters in simulation experiments. We utilize standardized concomitant variables defined during the course of simulation runs. We first use these concomitant variables to counteract the unknown error of response by the method of control variates, then use a concomitant variable not used in the controlled response and stratify the response into appropriate strata to reduce the variation of controlled response additionally. In case that the covariance between the response and a set of control variates is known, we identify the simulation efficiency of suggested method using control variates and stratified sampling. We conjecture the simulation efficiency of this method is better than that achieved by separated application of either control variates or stratified sampling in a simulation experiments. We investigate such an efficiency gain through simulation on a selected model.

A Study of the Effective Weed Control by Herbicides in a Nursery and Forests(I) -Weed Control in a Nursery for Silviculture and Landscape Architecture- (묘포장 및 산지에서 제초제를 이용한 효과적인 잡초방제에 대한 연구(I) -조림.조경용 수묘포장의의 제초관리-)

  • 서병수;김세천;박종민;이창헌
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.1
    • /
    • pp.29-38
    • /
    • 1999
  • Three kinds of soil surface applied herbicides and three kinds of foliage applied herbicides were used to study weed control effect, appropriate concentration, phyto-toxicity against trees and economical efficiency of weed control on trees, Pinus thunbergii, Picea abies, Chamaecyparis obtusa, Quercus accutissima, and Fraxinus rhynchopylla in a nursery. The results were obtained as follows; 1.The control effect of the soil surface applied herbicides showed that the three herbicides; Alachlor, Pendimenthalin and Simazine were alike in their holding effect of weed development, and the sensibility of weed spp. on the herbicides was different. The mean control effect was 58~89%. 2. The weed control effect of the foliage applied herbicides demonstrated that Paraquat dichloride was the best of 84~95% and followed by Glufosnate ammonium and Glyphosate. Especially when the half of its standard amount was treated, the effect of Paraquat dichloride was higher than the other herbicides. 3. Generally, the weed control effect became better as the concentration of the herbcide getting higher. As the concentration of the herbicide got higher, the restraining effect of weed development was continued for a long time in the soil surface applied herbicides, while the weed control effect appeared earlier in the foliage applied herbicides. 4. As the result of the soil surface treatments, 20% of short seedings of Fraxinus rhychopylla treated with twice amount of standard Alachlor died and the rest seeding showed low growth. In the other treatments, there was neither harmful effect of herbicides on the seedings nor growth decrease of them compared to those weeded by men. 5. When treated with foliage applied herbcides, leaves were partially of and discolorated in most treatments. About 0.4~6.2% of Fraxinus thynchopylla, which had short seedings died, and there was no difference in growth with the other treatments. 6. The herbicides showed better economical efficiency over 68% than weed control by men. Especially, Alachlaor of the soil surface applied herbicides showed the highest efficiency(77.6%), while Paraquat dichloride of the foliage applied herbicides was the best(70.3%)..

  • PDF