• 제목/요약/키워드: Control augmentation system

검색결과 105건 처리시간 0.03초

Design of an Autonomous Hover Control System for a Small Quadrotor

  • Raharja, Gilar B.;Kim, Gyu-Beom;Yoon, K.J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.338-344
    • /
    • 2010
  • This paper discusses the development of the control system of a mini quadrotor in Konkuk University for indoor applications. The attitude control system consists of a stability augmentation system, which acts as the inner loop control, and a modern control approach based on modeling will be implemented as the outer loop. The inner loop control was experimentally satisfied by a proportional-derivative controller; this was used to support the flight test in order to validate the modeling. This paper introduces the mathematical model for the simulation and design of the optimal control on the outer loop control. To perform the experimental tests, basic electronic hardware was developed using simple configurations; a microcontroller used as the embedded controller, a low-cost 100 Hz inertial sensors used for the inertial sensing, infra-red sensors were employed for horizontal ranging, an ultrasonic sensor was used for ground ranging and a high performance propeller system built on an quadrotor airframe was also employed. The results acquired from this compilation of hardware produced an automatic hovering ability of the system with ground control system support for the monitoring and fail-safe system.

다변수 시간지연 시스템의 상태궤환 제어기 설계 (State feedback controller design for linear multivariable systems with delays)

  • 홍석민;황승구;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.1040-1044
    • /
    • 1992
  • This paper presents an algebraic approach for finding a dynamic state feedback controller when the linear multi-input system with delays in both state and input is controllable. In the time-delay case, controllability of the system does not always imply that system is cyclizable. Therefore, reduced order augmentation systems which is cyclizable as the time-varying case are considered. It is possible to construct feedback contorl systems by using single-input methods.

  • PDF

기존제어기와 신경회로망의 혼합제어기법을 이용한 미사일 적응 제어기 설계 (Adaptive Control Design for Missile using Neural Networks Augmentation of Existing Controller)

  • 김광찬;성재민;김병수
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1218-1225
    • /
    • 2008
  • This paper presents the design of a neural network based adaptive control for missile is presented. The application model is Exocet MM40, which is derived from missile DATCOM database. Acceleration of missile by tail Fin control cannot be controllable by DMI (Dynamic Model Inversion) directly because it is non-minimum phase system. So, the inner loop consists of DMI and NN (Neural Network) and the outer loop consists of PI controller. In order to satisfy the performances only with PI controller, it is necessary to do some additional process such as gain tuning and scheduling. In this paper, all flight area would be covered by just one PI gains without tuning and scheduling by applying mixture control technique of conventional controller and NN to the outer loop. Also, the simulation model is designed by considering non-minimum phase system and compared the performances to distinguish the validity of control law with conventional PI controller.

H 기반 틸트로터 항공기 횡방향 SCAS 설계 (Design of Lateral SCAS based on H for Tilt Rotor Aircraft)

  • 이장호;유창선
    • 항공우주시스템공학회지
    • /
    • 제2권3호
    • /
    • pp.1-6
    • /
    • 2008
  • The tilt rotor aircraft has the flight characteristics which takes off vertically like a helicopter and flies forward like an airplane. Especially, the transition process from a helicopter to an airplane mode requires not only the mixing of control inputs but also the stability and controllability augmentation system(SCAS) in order to keep the safe flight because there are compound flight dynamic characteristics of a helicopter and an airplane including non-linearity, uncertainty. This paper describes the design of SCAS in a lateral motion for the tilt rotor aircraft based on the $H_{\infty}$ control method, which was performed from mathematical model with weighting matrix based on the relationship between the $H_{\infty}$ norm and the sensitivity function. Through simulation analysis for the controller designed on the $H_{\infty}$ control theory, it was shown that this method may be applied to the control design of the tilt rotor aircraft.

  • PDF

Development of Ground Monitoring and Control System for Korea Augmentation Satellite System

  • Daehee Won;Chulhee Choi;Eunsung Lee;Hantae Cho;Dongik Jang;Eunok Jang;Heetaek Lim;Ho Sung Lee;Jungja Kim;Joohap Choi
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권2호
    • /
    • pp.185-200
    • /
    • 2023
  • The Korea Augmentation Satellite System (KASS) is the first satellite navigation enhancement system in Korea developed in compliance with international standards. Technologies accumulated during the development process should be spread to industries such as academia and serve as the basis for developing the domestic satellite navigation field. This paper introduces the development process from design to implementation, testing, and verification of KASS control systems (KCS). First, development standards, milestones, requirements, and interface standards are presented as KCS development methods, and major functional design, physical design, and hardware/software implementation are described based on the allocated requirements. Subsequently, the verification environment, procedures, and results of the development product are covered and the developed operational and maintenance procedures are described. In addition, based on the experience gained through the development, suggestions were made for beneficial technology development and organization when promoting satellite navigation projects in the future. Since this work has important historical value for the development of domestic satellite navigation, it is expected that the development results will be shared with academia and industry in the future and be used as basic data for similar development.

비행제어시스템 설계 관점의 B737MAX JT610편 사고분석과 교훈 (Accident Analysis & Lessons Learned of B737MAX JT610 from a Flight Control System Design Perspective)

  • 문정호;조환기
    • 한국항공운항학회지
    • /
    • 제28권1호
    • /
    • pp.106-114
    • /
    • 2020
  • The Lion Air JT610 accident in Indonesia in October 2018, along with the Ethiopian Airline ET302 accident in March 2019, is an significant aircraft accident that detects defects of the B737MAX aircraft. Shortly after the accident, the FAA prohibited operation of the aircraft. This action has affected the market environment of airlines and aircraft manufacturers around the world. In October 2019, Indonesian Traffic Safety Committee released an accident investigation report for Lion Air JT610, which concluded that the causes of the accident were MCAS design defects, lack of education and training, and errors in the repair process. This paper summarizes the flight control system of the B737MAX aircraft, the causes of the accident based on the final accident investigation report, and provides considerations for aircraft design and retrofit.

SAT#1 (Preliminary Integration) Test Results of KASS System

  • Jeong, Hwanho;Jang, HyunJin;Kim, Koontack;Lee, Jaeeun;Lee, ByungSeok
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권2호
    • /
    • pp.145-151
    • /
    • 2021
  • According to the Korea Augmentation Satellite System (KASS) system milestone, Site Acceptance Test (SAT) has three steps test until the end of the project. SAT#1 is the first time of SAT steps and verify the KASS Reference Station (KRS) and Sub System (S/S) for the monitoring and controllable. After the equipment and software were installed at the Mission Control Center (MCC) with Central Monitoring and Control Simulator (CMS) for the SAT#1, the 1:1 test was progressed when the KRS and S/S are ready to test. SAT#1 has a 10 steps test case and it was progressed each KRS sites. The test was finished throughout the real-time monitoring and the data collection including the data analysis all of the 7 KRS sites. Finally SAT#1 was completed on December 2020 with successfully.

정수 슬러지 발생량 조사 및 슬러지 처리시설의 공정평가 (Research of Sludge Quantity and Evaluation of Sludge Handling Facilities in Water Treatment Plants)

  • 문성용;김승현
    • 상하수도학회지
    • /
    • 제18권3호
    • /
    • pp.279-290
    • /
    • 2004
  • Sludge quantity has increased at "A"water treatment plant due to deterioration of raw water quality and GAC installation. Increased sludge resulted in overloading on sludge handling facilities. The object of this study is to survey sludge quantity and capacity of sludge handling facilities at "A"water treatment plant. Measured quantity of sedimentation sludge considerably exceeded the design capacity of sludge holding basin. Sludge holding basin was properly designed, but low concentration of sludge discharged from sedimentation basin caused production of large volume of the sludge. Timer operated control system for sludge withdrawal unit and leakage through a control valve were suspected to cause the low concentration. Augmentation of the control system by a turbidity meter and addition of a new control valve successfully reduced the sludge volume enough to satisfy the design capacity of sludge holding basin. Unlike sedimentation sludge, measured quantity of washwater was considerably less than the design capacity of washwater basin because it was over-designed.

CNN 기반의 인간형 로봇의 낙상 판별 모델 (CNN-based Fall Detection Model for Humanoid Robots)

  • 박신우;조현민
    • 센서학회지
    • /
    • 제33권1호
    • /
    • pp.18-23
    • /
    • 2024
  • Humanoid robots, designed to interact in human environments, require stable mobility to ensure safety. When a humanoid robot falls, it causes damage, breakdown, and potential harm to the robot. Therefore, fall detection is critical to preventing the robot from falling. Prevention of falling of a humanoid robot requires an operator controlling a crane. For efficient and safe walking control experiments, a system that can replace a crane operator is needed. To replace such a crane operator, it is essential to detect the falling conditions of humanoid robots. In this study, we propose falling detection methods using Convolution Neural Network (CNN) model. The image data of a humanoid robot are collected from various angles and environments. A large amount of data is collected by dividing video data into frames per second, and data augmentation techniques are used. The effectiveness of the proposed CNN model is verified by the experiments with the humanoid robot MAX-E1.

Fault Tolerant Control of Hexacopter for Actuator Faults using Time Delay Control Method

  • Lee, Jangho;Choi, Hyoung Sik;Shim, Hyunchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.54-63
    • /
    • 2016
  • A novel attitude tacking control method using Time Delay Control (TDC) scheme is developed to provide robust controllability of a rigid hexacopter in case of single or multiple rotor faults. When the TDC scheme is developed, the rotor faults such as the abrupt and/or incipient rotor faults are considered as model uncertainties. The kinematics, modeling of rigid dynamics of hexacopter, and design of stability and controllability augmentation system (SCAS) are addressed rigorously in this paper. In order to compare the developed control scheme to a conventional control method, a nonlinear numerical simulation has been performed and the attitude tracking performance has been compared between the two methods considering the single and multiple rotor faults cases. The developed control scheme shows superior stability and robust controllability of a hexacopter that is subjected to one or multiple rotor faults and external disturbance, i.e., wind shear, gust, and turbulence.