• Title/Summary/Keyword: Control and monitoring board

Search Result 159, Processing Time 0.026 seconds

Development of Engineering Model for the Thruster Control Unit and Simulation system of the Reaction Control System (냉가스 추력기 시스템용 EM 제어기 및 점검 시스템 개발)

  • Jeon, Sang-Un;Kim, Ji-Hun;Jeong, Ho-Rak;Choe, Hyeong-Don
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.188-194
    • /
    • 2006
  • This paper deals with the development of Engineering Model for the TCU( Thruster Control Unit) and simulation system of the reaction control system using cold gas. TCU communicates with TLM(Telemetry) and ground control console so that it transmits monitoring data of pressures and temperatures for reaction control system. The cpu/communication board performs MIL-STD-1553B communication, RS-422 communication, data input/output processing and program loading to EEPROM. We applied Intel 80386DX Microprocessor, 256Kbytes EEPROM and 256Kbytes SRAM for program storage and execution. Also, we developed the direct access interface circuit to EEPROM and simulation system for TCU.

  • PDF

Seoul World Cup Stadium Electric Plan (서울월드컵경기장 전기설계)

  • 최용민
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.5
    • /
    • pp.40-43
    • /
    • 2001
  • In order for the World cup football game to be operated stably with duplicate service electric power supply, It is done, emergency generator and the U.P.S it establishes. the electric power system power control, lighting control, integrated monitoring. rue fighting. obstruction light, the searchlight, snow melting, electric erosion shield. grounding, the lightening protection and viewable lighting, stadium floodlight and an electric bulletin board it composed of the back which it sells.

  • PDF

Development of Hardware for Controlling Abnormal Temperature in PCS of Photovoltaic System (태양광발전시스템의 PCS에서 이상 온도 제어를 위한 하드웨어개발)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Kim, Yoon-Bok
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.21-26
    • /
    • 2019
  • This paper is purposed to develop hardware for controlling abnormal temperature that can occur environment and component itself in PCS. In order to be purpose, the hardware which is four part(sensing, PLC, monitoring and output) keep detecting temperature for critical components of PCS and can control the abnormal temperature. Apply to the hardware, it is selected to PV power generation facilities of 20 kW in Cheong-ju city and measured the data for one year in 2017. Through the temperature data, it is found critical components of four(discharge resistance, DC capacitor, IGBT, DSP board) and entered the setting value for operating the fan. The setting values for operating the fan are up to $130^{\circ}C$ in discharge resistance, $60^{\circ}C$ in DC capacitor, $55^{\circ}C$ in IGBT and DSP board. The hardware is installed at the same PCS(20 kW in Cheong-ju city) in 2018 and the power generation output is analyzed for the five days with the highest atmospheric temperature(Clear day) in July and August in 2017 and 2018 years. Therefore, the power generation output of the PV system with hardware increased up to 4 kWh.

A Design and Implementation of Busbar Joint and Temperature Measurement System (부스바 접촉 상태 및 온도 감지 시스템 설계 및 구현)

  • Lee, Young-dong;Jeong, Sung-Hak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.379-385
    • /
    • 2017
  • In general, distribution board, panel board and motor control center can be installed over a wide area such as residence of group, building, schools, factories, ports, airports, water service and sewerage, substation and heavy industries that are used to supply converts the voltages extra high voltage into optimal voltage. There are electrical accidents due to rise of contact temperature, loose contact between busbar, deterioration of the contact resistance, over temperature of the busbars. In this paper, we designed and implemented the busbar joint and temperature measurement system, which can measure the joint resistance of busbar and loose connection between busbar using potentiometer and non-contact infrared sensor. The experimental results show that tightening the bolt and nut is fully engaged, resistance was decreased and maximum error range was 0.1mm. Also, the experimental result showed that the temperature at the contact area is increased from $27.3^{\circ}C$ to $69.3^{\circ}C$by the contact resistance.

U-healthcare Based System for Sleeping Control and Remote Monitoring (u-헬스케어기반의 수면제어 및 원격모니터링 시스템)

  • Kim, Dong-Ho;Jeong, Chang-Won;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.8 no.1
    • /
    • pp.33-45
    • /
    • 2007
  • Using switches and sensors informing the current on or off state, this paper suggests a sleeping control and remote monitoring system that not only can recognize the sleeping situations but also can control for keeping an appropriate sleeping situation remotely, And we show an example that this system is applied to the healthcare sleeping mat, Our system comprises the following 3 parts: a part for detecting the sleeping situations, a part for extracting sensing data and sending/receiving the relating situated data, and a part controlling and monitoring the all of sleeping situations. In details, in order to develop our system, we used the touch and pressure-sensitive sensors with On/Off functions for a purpose of the first part, The second part consists of the self-developed embedded board with the socket based communication as well as extracting real-time sensing data. And the third part is implemented by service modules for providing controlling and monitoring functions previously described. Finally, these service modules are implemented by the TMO scheme, one of real-time object-oriented programming models and the communications among them is supported using the TMOSM of distributed real-time middleware.

  • PDF

An Integrated Emergency Call System based on Public Switched Telephone Network for Elevators

  • Lee, Guisun;Ryu, Hyunmi;Park, Sunggon;Cho, Sungguk;Jeon, Byungkook
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.69-77
    • /
    • 2019
  • Today, most of elevators have an emergency call facility for emergency situations. However, if the network installed in the elevator is also out of power, it cannot be used for the elevator remote monitoring and management. So, we develop an integrated and unified emergency call system, which can transmit not only telephone call but also data signals using PSTN(Public Switched Telephone Network) in order to remote monitoring and management of elevators, even though a power outage occurs. The proposed integrated emergency call system to process multiple data such as voice and operational information is a multi-channel board system which is composed of an emergency phone signal processing module and an operational information processing module in the control box of elevator. In addition, the RMS(remote management server) systems based on the Web consist of a dial-up server and a remote monitoring server where manages the elevator's operating information, status records, and operational faults received via the proposed integrated and unified emergency call system in real time. So even if there's a catastrophic emergency, the proposed RMS systems shall ensure and maintain the safety of passengers inside the elevator. Also, remote control of the elevator by this system should be more efficient and secure. In near future, all elevator emergency call system need to support multifunctional capabilities to transmit operational data as well as phone calls for the safety of passengers. In addition, for safer elevators, it is necessary to improve them more efficiently by combining them with high-tech technologies such as the Internet of Things and artificial intelligence.

Industrial Communication Gateway Design of Communications Module Additive layer type (통신 모듈 적층형 산업용 통신 게이트웨이 설계)

  • Eum, Sang-hee;Nam, Jae Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.133-136
    • /
    • 2019
  • Recently, many industrial devices are facing protocol compatibility problems with external monitoring and control systems. This paper designed an industrial communication gateway that can support the transformation of industrial communication protocol using multi-layered communication module. Industrial communication gateways have a structure that connects individual communication modules using rs485 serial communication to multiple layers. Each communication module consisted of analog data card, a digital data card LAN, and a CAN-enabled card. The main board processor used Atmega micro-processor, and the rs485 serial slot was placed to have a multi-layer communication module structure. These additive layer type communication modules support analog and digital I/O functions and LAN and CAN for wide use in industrial communication control and monitoring.

  • PDF

Real Time ECG Monitoring Through a Wearable Smart T-shirt

  • Mathias, Dakurah Naangmenkpeong;Kim, Sung-Il;Park, Jae-Soon;Joung, Yeun-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.16-19
    • /
    • 2015
  • A wearable sensing ECG T-shirt for ubiquitous vital signs sensing is proposed. The sensor system consists of a signal processing board and capacitive sensing electrodes which together enable measurement of an electrocardiogram (ECG) on the human chest with minimal discomfort. The capacitive sensing method was employed to prevent direct ECG measurement on the skin and also to provide maximum convenience to the user. Also, low power integrated circuits (ICs) and passive electrodes were employed in this research to reduce the power consumption of the entire system. Small flexible electrodes were placed into cotton pockets and affixed to the interior of a worn tight NIKE Pro combat T-shirt. Appropriate signal conditioning and processing were implemented to remove motion artifacts. The entire system was portable and consumed low power compared to conventional ECG devices. The ECG signal obtained from a 24 yr. old male was comparable to that of an ECG simulator.

Gender Differences in Problematic Online Behavior of Adolescent Users over Time (남녀 청소년 소비자의 온라인 문제행동 차이에 대한 종단 분석)

  • Kim, Jung Eun
    • Human Ecology Research
    • /
    • v.53 no.6
    • /
    • pp.641-654
    • /
    • 2015
  • This study identifies and tracks changes gender differences in adolescent users' problematic online behavior. This study used Korea Youth Panel Survey (KYPS), which has tracked respondents over 7 years, with self-control theory and social learning theory applied as a theoretical framework. The model included individual-level variables such as self-control and respondent's experience of problematic behavior (offline), as well as socialization variables such as the number close friends who engaged in problematic offline behavior, parent-child relationships, and parental monitoring. Dependent variables included problematic online behavior, unauthorized ID use (ID theft) and cyberbullying (cursing/insulting someone in a chat room or on a bulletin board). Control variables consisted of academic performance, time spent on a computer, monthly household income, and father's educational attainment. Random and fixed effects models were performed by gender. Results supported self-control theory even for the within-level analysis (fixed effects models) regardless of gender, while social learning theory was partially supported. Only peer effects were found significant (except for unauthorized ID use) among girls. Year dummy variables showed significant negative associations; however, academic performance and time spent using computers were significant in some models. Father's educational attainment and monthly household income were found insignificant, even in the random effects models. We also discuss implications and suggestions for future research and policy makers.

Development of a low-cost multifunctional wireless impedance sensor node

  • Min, Jiyoung;Park, Seunghee;Yun, Chung-Bang;Song, Byunghun
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.689-709
    • /
    • 2010
  • In this paper, a low cost, low power but multifunctional wireless sensor node is presented for the impedance-based SHM using piezoelectric sensors. Firstly, a miniaturized impedance measuring chip device is utilized for low cost and low power structural excitation/sensing. Then, structural damage detection/sensor self-diagnosis algorithms are embedded on the on-board microcontroller. This sensor node uses the power harvested from the solar energy to measure and analyze the impedance data. Simultaneously it monitors temperature on the structure near the piezoelectric sensor and battery power consumption. The wireless sensor node is based on the TinyOS platform for operation, and users can take MATLAB$^{(R)}$ interface for the control of the sensor node through serial communication. In order to validate the performance of this multifunctional wireless impedance sensor node, a series of experimental studies have been carried out for detecting loose bolts and crack damages on lab-scale steel structural members as well as on real steel bridge and building structures. It has been found that the proposed sensor nodes can be effectively used for local wireless health monitoring of structural components and for constructing a low-cost and multifunctional SHM system as "place and forget" wireless sensors.