• Title/Summary/Keyword: Control Transition

Search Result 961, Processing Time 0.028 seconds

Evaluation of the Public Health Emergency Response to the COVID-19 Pandemic in Daegu, Korea During the First Half of 2020

  • Lee, Hwajin;Kim, Keon-Yeop;Kim, Jong-Yeon;Kam, Sin;Lee, Kyeong Soo;Lee, Jung Jeung;Hong, Nam Soo;Hwang, Tae-Yoon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.55 no.4
    • /
    • pp.360-370
    • /
    • 2022
  • Objectives: This study evaluated the response in Daegu, Korea to the first wave of the coronavirus disease 2019 (COVID-19) pandemic according to a public health emergency response model. Methods: After an examination of the official data reported by the city of Daegu and the Korea Centers for Disease Control and Prevention, as well as a literature review and advisory meetings, we chose a response model. Daegu's responses were organized into 4 phases and evaluated by applying the response model. Results: In phase 1, efforts were made to block further transmission of the virus through preemptive testing of a religious group. In phase 2, efforts were concentrated on responding to mass infections in high-risk facilities. Phase 3 involved a transition from a high-intensity social distancing campaign to a citizen participation-based quarantine system. The evaluation using the response model revealed insufficient systematic preparation for a medical surge. In addition, an incorporated health-related management system and protection measures for responders were absent. Nevertheless, the city encouraged the participation of private hospitals and developed a severity classification system. Citizens also played active roles in the pandemic response by practicing social distancing. Conclusions: This study employed the response model to evaluate the early response in Daegu to the COVID-19 pandemic and revealed areas in need of improvement or maintenance. Based on the study results, creation of a systematic model is necessary to prepare for and respond to future public health emergencies like the COVID-19 pandemic.

Crossover from weak anti-localization to weak localization in inkjet-printed Ti3C2Tx MXene thin-film

  • Jin, Mi-Jin;Um, Doo-Seung;Ogbeide, Osarenkhoe;Kim, Chang-Il;Yoo, Jung-Woo;Robinson, J. W. A.
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.259-267
    • /
    • 2022
  • Two-dimensional (2D) transition metal carbides/nitrides or "MXenes" belong to a diverse-class of layered compounds, which offer composition- and electric-field-tunable electrical and physical properties. Although the majority of the MXenes, including Ti3C2Tx, are metallic, they typically show semiconductor-like behaviour in their percolated thin-film structure; this is also the most common structure used for fundamental studies and prototype device development of MXene. Magnetoconductance studies of thin-film MXenes are central to understanding their electronic transport properties and charge carrier dynamics, and also to evaluate their potential for spin-tronics and magnetoelectronics. Since MXenes are produced through solution processing, it is desirable to develop deposition strategies such as inkjet-printing to enable scale-up production with intricate structures/networks. Here, we systematically investigate the extrinsic negative magnetoconductance of inkjetprinted Ti3C2Tx MXene thin-films and report a crossover from weak anti-localization (WAL) to weak localization (WL) near 2.5K. The crossover from WAL to WL is consistent with strong, extrinsic, spin-orbit coupling, a key property for active control of spin currents in spin-orbitronic devices. From WAL/WL magnetoconductance analysis, we estimate that the printed MXene thin-film has a spin orbit coupling field of up to 0.84 T at 1.9 K. Our results and analyses offer a deeper understanding into microscopic charge carrier transport in Ti3C2Tx, revealing promising properties for printed, flexible, electronic and spinorbitronic device applications.

Examining the Practice of Digital Scholarship Services at Vietnam National University Ho Chi Minh City

  • Ngo, Thi Huyen;Nguyen, Hong Sinh;Ninh, Thi Kim Thoa
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The article reports the results of an investigation on the practice of providing digital scholarship services at Vietnam National University Ho Chi Minh City, Vietnam. This study is part of an ongoing research project entitled Developing a digital scholarship service framework for universities at Vietnam National University Ho Chi Minh City. It employed a qualitative research approach through in-depth interviews with 31 individuals who are university managers, library managers, lecturers, and postgraduate and undergraduate students from six member universities and Central Library of Vietnam National University Ho Chi Minh City. Research results show that some digital scholarship services have been provided at Vietnam National University Ho Chi Minh City. However, they have not been yet systematically implemented and have not met users' needs. Lack of needed resources such as space, technology infrastructure, human resources, finance, and stakeholder support are among major challenges in developing digital scholarship services. The management of existing digital scholarship services is fragmented without a clear policy for developing digital scholarship and supporting services. The study contributes to the existing knowledge by adding substantially to current understanding of the practice of providing digital scholarship services in Vietnam's universities in the transition period, from state control to autonomy, which has not been much addressed in previous research. Furthermore, this study can be a useful reference for higher education institutions in developing countries regarding implementation of digital scholarship services.

Field trial of expandable profile liners in a deep sidetrack well section and optimizable schemes approach for future challenges

  • Zhao, Le;Tu, Yulin;Xie, Heping;Gao, Mingzhong;Liu, Fei
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.271-281
    • /
    • 2022
  • This study discusses challenges of running expandable profile liners (EPLs) to isolate trouble zones in directional section of a deep well, and summary the expandable profile liner technology (EPLT) field trial experience. Technically, the trial result reveals that it is feasible to apply the EPLT solving lost-circulation control problem and wellbore instability in the deep directional section. Propose schemes for optimizing the EPLT operation procedure to break through the existing bottleneck of EPLT in the deep directional section. Better-performing transition joints are developed to improve EPL string reliability in high borehole curvature section. High-performing and reliable expanders reduce the number of trips, offer excellent mechanical shaping efficiency, simplify the EPLT operation procedure. Application of the expansion and repair integrated tool could minimize the risk of insufficient expansion and increase the operational length of the EPL string. The new welding process and integrated automatic welding equipment improve the welding quality and EPL string structural integrity. These optimization schemes and recent new advancements in EPLT can bring significant economic benefits and promote the application of EPLT to meet future challenges.

Protective effects of endurance exercise on skeletal muscle remodeling against doxorubicin-induced myotoxicity in mice

  • Kwon, Insu
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.2
    • /
    • pp.11-21
    • /
    • 2020
  • [Purpose] Doxorubicin (DOX) is a potent anti-cancer drug that appears to have severe myotoxicity due to accumulation. The skeletal muscle has a regeneration capacity through satellite cell activation when exposed to extracellular stimulus or damage. Endurance exercise (EXE) is a therapeutic strategy that improves pathological features and contributes to muscle homeostasis. Thus, this study investigated the effect of EXE training in mitigating chronic DOX-induced myotoxicity. [Methods] Male C57BL/6J mice were housed and allowed to acclimatize with free access to food and water. All the mice were randomly divided into four groups: sedentary control (CON, n=9), exercise training (EXE, n=9), doxorubicin treatment (DOX, n=9), doxorubicin treatment and exercise training (DOX+EXE, n=9) groups. The animals were intraperitoneally injected with 5 mg/kg/week of DOX treatment for 4 weeks, and EXE training was initiated for treadmill adaptation for 1 week and then performed for 4 weeks. Both sides of the soleus (SOL) muscle tissues were dissected and weighed after 24 hours of the last training sessions. [Results] DOX chemotherapy induced an abnormal myofiber's phenotype and transition of myosin heavy chain (MHC) isoforms. The paired box 7 (PAX7) and myoblast determination protein 1 (MYOD) protein levels were triggered by DOX, while no alterations were shown for the myogenin (MYOG). DOX remarkably impaired the a-actinin (ACTN) protein, but the EXE training seems to repair it. DOX-induced myotoxicity stimulated the expression of the forkhead box O3 (FOXO3a) protein, which was accurately controlled and adjusted by the EXE training. However, the FOXO3a-mediated downstream markers were not associated with DOX and EXE. [Conclusion] EXE postconditioning provides protective effects against chronic DOX-induced myotoxicity, and should be recommended to alleviate cancer chemotherapy-induced late-onset myotoxicity.

Current Status of Standardization for Quality Control of Hydrogen Fuel in Hydrogen Refueling Stations for Fuel Cell Electric Vehicles (수소충전소 내 연료전지용 수소연료 품질 관리 및 표준화 동향)

  • KIM, DONGKYUM;LIM, JEONG SIK;LEE, JEONGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.284-292
    • /
    • 2022
  • Hydrogen is promising a candidate for energy supporting the carbon neutrality policy for greenhouse gas reduction, which is being promoted in several countries, including Korea. Although challenging efforts-such as lowering the costs of green hydrogen production and fuel cells-remain, hydrogen fuel cell electric vehicles (FCEVs) are expected to play a significant role in the energy transition from fossil fuels to renewable energy. In line with this objective, the hydrogen FCEV working group in the International Organization for Standardization (ISO) compiled and revised international standards related to hydrogen refueling stations as of 2019. A well-established hydrogen quality management system based on the standard documents will increase the reliability of hydrogen charging stations and accelerate the use of FCEVs. In this study, among the published ISO standards and other references, the main requirements for managing charging stations and developing related techniques were summarized and explained. To respond preemptively to the growing FCEV market, a continuous hydrogen quality monitoring method suitable for use at hydrogen charging stations was proposed.

Origin of Tearing Paths in Transferred Graphene by H2 Bubbling Process and Improved Transfer of Tear-Free Graphene Films U sing a Heat Press

  • Jinsung Kwak
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.522-527
    • /
    • 2022
  • Among efforts to improve techniques for the chemical vapor deposition of large-area and high-quality graphene films on transition metal substrates, being able to reliably transfer these atomistic membranes onto the desired substrate is a critical step for various practical uses, such as graphene-based electronic and photonic devices. However, the most used approach, the wet etching transfer process based on the complete etching of metal substrates, remains a great challenge. This is mainly due to the inevitable damage to the graphene, unintentional contamination of the graphene layer, and increased production cost and time. Here, we report the systematic study of an H2 bubbling-assisted transfer technique for graphene films grown on Cu foils, which is nondestructive not only to the graphene film but also to the Cu substrate. Also, we demonstrate the origin of the graphene film tearing phenomenon induced by this H2 bubbling-assisted transfer process. This study reveals that inherent features are produced by rolling Cu foil, which cause a saw-like corrugation in the poly(methyl methacrylate) (PMMA)/graphene stack when it is transferred onto the target substrate after the Cu foil is dissolved. During the PMMA removal stage, the graphene tearing mainly appears at the apexes of the corrugated PMMA/graphene stack, due to weak adhesion to the target substrate. To address this, we have developed a modified heat-press-assisted transfer technique that has much better control of both tearing and the formation of residues in the transferred graphene films.

The experiences of depressed pregnant women participating in a cognitive behavioral therapy program via video communication: an exploratory qualitative study (우울한 임신 여성의 화상 인지행동치료 프로그램 참여 경험: 탐색적 질적연구)

  • Eunjoo Lee;Mijung Kim;Youngsuk Park
    • Women's Health Nursing
    • /
    • v.28 no.4
    • /
    • pp.275-285
    • /
    • 2022
  • Purpose: This study explored the experiences of pregnant women with depressed mood participating in a group cognitive behavioral therapy (CBT) program using video communication, based on Beck's cognitive theory. Methods: The participants were six pregnant women out of 13 women who had participated in an 8-session group CBT program using video communication for women with depressed mood (Edinburgh Postnatal Depression score of ≥9). Data were collected from February 20 through March 25, 2021. In-depth individual interviews were conducted through a video conferencing platform at 1 month post-baseline. Thematic analysis was done. Results: Three themes, 10 subthemes, and 38 concepts were derived from experiences of participating in the 4-week group CBT program (twice a week). The first theme, entitled "continuing realization" had subthemes of "a negative and instable self," "a selfish judgment that excludes others," and "a strong belief in self-control." The second theme, entitled "attempt to change for restoration" had subthemes of "shift to rational thinking," "freedom from suppressed beliefs," "tolerance of other people," and "courage for self-expression." The third theme, entitled "departure for a positive life," had subthemes of "emotional healing," "faith in oneself," and "reestablishing the criteria for happiness." Conclusion: Pregnant women with depressed mood expressed that continuing realizations and attempts to change supported their transition toward a positive direction of healing. Thus, they were able to change their distorted thinking into rational thinking through CBT using video communication. These findings support the use of group CBT using video communication with pregnant women who have depressed mood.

Recent Research Trend of Zeolitic Imidazolate Framework-67 for Bifunctional Catalyst (ZIF-67을 이용한 이기능성 촉매의 최신연구 동향)

  • Kim, Sang Jun;Jo, Seung Geun;Park, Gil-Ryeong;Lee, Eun Been;Lee, Jae Min;Lee, Jung Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.98-106
    • /
    • 2022
  • Metal-organic frameworks (MOFs) are widely used in various fields because they make it easy to control porous structures according to combinations of metal ions and organic linkers. In addition, ZIF (zeolitic imidazolate framework), a type of MOF, is made up of transition metal ions such as Co2+ or Zn2+ and linkers such as imidazole or imidazole derivatives. ZIF-67, composed of Co2+ and 2-methyl imidazole, exhibits both chemical stability and catalytic activity. Recently, due to increasing need for energy technology and carbon-neutral policies, catalysis applications have attracted tremendous research attention. Moreover, demand is increasing for material development in the electrocatalytic water splitting and metal-air battery fields; there is also a need for bifunctional catalysts capable of both oxidation/reduction reactions. This review summarizes recent progress of bifunctional catalysts for electrocatalytic water splitting and metal-air batteries using ZIF-67. In particular, the field is classified into areas of thermal decomposition, introduction of heterogeneous elements, and complex formation with carbon-based materials or polyacrylonitrile. This review also focuses on synthetic methods and performance evaluation.

A Study on Determination of VPP Cloud Charges (VPP 클라우드 요금 산정에 관한 연구)

  • Lim, Chung-Hwan;Kim, Dong-Sub;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.299-308
    • /
    • 2022
  • Recent, energy transition policies are driving to increase in the number of small photovoltaic(PV) generators. It is difficult for system operators to accurately anticipate the amount of power generated from such small scale PV generation, and this may disrupt dispatch schedules and result in an increase in cost. The need for a Virtual Power Plant(VPP) is emerging as a way of resolving these problems, as it would integrate small-scale PV plants and eliminate uncertainty about the amount of power generated, control voltage, and provide power reserves. In this paper, the cost evaluation methods are described for determination of VPP cloud charges both Net Present Value(NPV) method and Profitability Index(PI) method, the calculated outcomes of the two types of cost evaluation methods are presented in detail. It seems we secure profitability as we get 1.22 of profitability index from calculation results, it may be attractive for the aggregator as NPV is enough for satisfying profitability.