• Title/Summary/Keyword: Control Speed

Search Result 9,545, Processing Time 0.038 seconds

Parallel Processing of K-means Clustering Algorithm for Unsupervised Classification of Large Satellite Imagery (대용량 위성영상의 무감독 분류를 위한 K-means 군집화 알고리즘의 병렬처리)

  • Han, Soohee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.187-194
    • /
    • 2017
  • The present study introduces a method to parallelize k-means clustering algorithm for fast unsupervised classification of large satellite imagery. Known as a representative algorithm for unsupervised classification, k-means clustering is usually applied to a preprocessing step before supervised classification, but can show the evident advantages of parallel processing due to its high computational intensity and less human intervention. Parallel processing codes are developed by using multi-threading based on OpenMP. In experiments, a PC of 8 multi-core integrated CPU is involved. A 7 band and 30m resolution image from LANDSAT 8 OLI and a 8 band and 10m resolution image from Sentinel-2A are tested. Parallel processing has shown 6 time faster speed than sequential processing when using 10 classes. To check the consistency of parallel and sequential processing, centers, numbers of classified pixels of classes, classified images are mutually compared, resulting in the same results. The present study is meaningful because it has proved that performance of large satellite processing can be significantly improved by using parallel processing. And it is also revealed that it easy to implement parallel processing by using multi-threading based on OpenMP but it should be carefully designed to control the occurrence of false sharing.

Area Efficient FPGA Implementation of Block Cipher Algorithm SEED (블록 암호알고리즘 SEED의 면적 효율성을 고려한 FPGA 구현)

  • Kim, Jong-Hyeon;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.4
    • /
    • pp.372-381
    • /
    • 2001
  • In this paper SEED, the Korea Standard 128-bit block cipher algorithm is implemented with VHDL and mapped into one FPGA. SEED consists of round key generation block, F function block, G function block, round processing block, control block and I/O block. The designed SEED is realized in an FPGA but we design it technology-independently so that ASIC or core-based implementation is possible. SEED requires many hardware resources which may be impossible to realize in one FPGA. So it is necessary to minimize hardware resources. In this paper only one G function is implemented and is used for both the F function block and the round key block. That is, by using one G function sequentially, we can realize all the SEED components in one FPGA. The used cell rate after synthesis is 80% in Altem FLEXI0KlOO. The resulted design has 28Mhz clock speed and 14.9Mbps performance. The SEED hardware is technology-independent and no other external component is needed. Thus, it can be applied to other SEED implementations and cipher systems which use SEED.

  • PDF

The Macroscopic Model for Signalized Intersections to Consider Progression in relation to Delay (지체시간과 연동성을 동시에 고려하는 신호교차로 시뮬레이션 모형의 개발)

  • Han, Yohee;Kim, Youngchan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.15-22
    • /
    • 2012
  • A performance index of singalized intersections is a standard to optimize signal control variables and to manage traffic flow. Traffic delays is generally used to minimize the average delay time on intersections or networks, progression efficiency is used to improve travel speed of main cooridors or to provide transit signal priority. We manage traffic flows with only selecting one index between delays and progression according to the objective of traffic management and field characteristics. In real field, the driver's satisfaction is high in any performance criteria when the waiting time is shorter and the unnecessary stop in front of traffic is smaller. This paper aims to develop simulation model to represent real progression with concurrently considering delays and progression. In order to reflect an effect of level of traffic volumes and residual queues which don't be considered in prior progression model, we apply shockwave model with flow-density diagram. We derive Cell Transmission Model of Daganzo in order to develop the delay index and the progression index for the macroscopic simulation model. In order to validate the effect, we analysis traffic delays and progression efficiency with comparing this model to Transyt-7F and PASSER V.

Development of Vehicle Arrival Time Prediction Algorithm Based on a Demand Volume (교통수요 기반의 도착예정시간 산출 알고리즘 개발)

  • Kim, Ji-Hong;Lee, Gyeong-Sun;Kim, Yeong-Ho;Lee, Seong-Mo
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.2
    • /
    • pp.107-116
    • /
    • 2005
  • The information on travel time in providing the information of traffic to drivers is one of the most important data to control a traffic congestion efficiently. Especially, this information is the major element of route choice of drivers, and based on the premise that it has the high degree of confidence in real situation. This study developed a vehicle arrival time prediction algorithm called as "VAT-DV" for 6 corridors in total 6.1Km of "Nam-san area trffic information system" in order to give an information of congestion to drivers using VMS, ARS, and WEB. The spatial scope of this study is 2.5km~3km sections of each corridor, but there are various situations of traffic flow in a short period because they have signalized intersections in a departure point and an arrival point of each corridor, so they have almost characteristics of interrupted and uninterrupted traffic flow. The algorithm uses the information on a demand volume and a queue length. The demand volume is estimated from density of each points based on the Greenburg model, and the queue length is from the density and speed of each point. In order to settle the variation of the unit time, the result of this algorithm is strategically regulated by importing the AVI(Automatic Vehicle Identification), one of the number plate matching methods. In this study, the AVI travel time information is composed by Hybrid Model in order to use it as the basic parameter to make one travel time in a day using ILD to classify the characteristics of the traffic flow along the queue length. According to the result of this study, in congestion situation, this algorithm has about more than 84% degree of accuracy. Specially, the result of providing the information of "Nam-san area traffic information system" shows that 72.6% of drivers are available.

Effect of Storage Duration, Temperature and Priming Treatment on Seed Germination of Polygonatum odoratum var. pluriflorum (둥굴레의 종자발아에 관여하는 저장기간, 온도 및 프라이밍의 영향)

  • Chang, Young-Deug;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.20 no.5
    • /
    • pp.481-489
    • /
    • 2007
  • Present experiments are conducted to study the seed viability and optimum germination temperature of Polygonatum odoratum var. pluriflorum that is known to have low germination ability and long germination duration. To enhance germination rate, various growth regulators and inorganic salts were employed. Low germination rate was obtained with 4 year old seeds, but not with $1{\sim}2$ year old seeds. The seeds germinated very well under $22{\sim}25^{\circ}C$ and germinated speed was rapid. Especially, $1{\sim}2$ year old seeds germinated at $25^{\circ}C$ showed $70{\sim}71.2%$ germination rate. Priming treatments using $GA_3$, IAA, NAA, kinetin, $KNO_3$, $KH_2PO_4$, $Ca(NO_3)_2$ were effective compared to control except BA. 1 year old seeds treated with $GA_3$ 0.5 mM and IAA 1 mM showed 96% and 93% germination rate, respectively.

Defining the Tumour and Gross Tumor Volume using PET/CT : Simulation using Moving Phantom (양전자단층촬영장치에서 호흡의 영향에 따른 종양의 변화 분석)

  • Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.935-942
    • /
    • 2021
  • Involuntary movement of internal organs by respiration is a factor that greatly affects the results of radiotherapy and diagnosis. In this study, a moving phantom was fabricated to simulate the movement of an organ or a tumor according to respiration, and 18F-FDG PET/CT scan images were acquired under various respiratory simulating conditions to analyze the movement range of the tumor movement by respiration, the level of artifacts according to the size of the tumor and the maximum standardized uptake value (SUVmax). Based on Windows CE 6.0 as the operating system, using electric actuator, electric actuator positioning driver, and programmable logic controller (PLC), the position and speed control module was operated normally at a moving distance of 0-5 cm and 10, 15, and 20 reciprocations. For sphere diameters of 10, 13, 17, 22, 28, and 37 mm at a delay time of 100 minutes, 80.4%, 99.5%, 107.9%, 113.1%, 128.0%, and 124.8%, respectively were measured. When the moving distance was the same, the difference according to the respiratory rate was insignificant. When the number of breaths is 20 and the moving distance is 1 cm, 2 cm, 3 cm, and 5 cm, as the moving distance increased at the sphere diameters of 10, 13, 17, 22, 28, and 37 mm, the ability to distinguish images from smaller spheres deteriorated. When the moving distance is 5 cm compared to the still image, the maximum values of the standard intake coefficient were 18.0%, 23.7%, 29.3%, 38.4%, 49.0%, and 67.4% for sphere diameters of 10, 13, 17, 22, 28, and 37 mm, respectively.

Saccharification Characteristics of Extruded Corn Starch at Different Process Parameters (압출성형 공정변수에 따른 옥수수전분 팽화물의 당화특성)

  • Lee, Kyu-Chul;Kim, Yeon-Soo;Ryu, Gi-Hyung
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.155-161
    • /
    • 2011
  • The aim of this study was to determine the effects of different extrusion conditions on the saccharification characteristics( initial reaction velocity, reaction rate constant, yield) of extruded corn starch. Extruded corn starch-water slurries were mixed with alpha-amylase for the enzymatic saccharification. The saccharification yield of extruded corn starch was high at lower feed moisture content and higher barrel temperature. The solubility of extrudates increased with increase in the SME input which increased with increase in the feed moisture content. Starch hydrolysates having DE 63.8 was obtained after 2 hr reaction. The initial reaction velocity of the extrudate slurry with alpha-amylase was higher with decrease in the feed moisture content. The initial reaction velocity of extruded corn starch was the highest ($2.26{\times}10^{-3}mmol/mL{\cdot}min$) at 25% feed moisture content and $120^{\circ}C$ barrel temperature, 250 rpm screw speed. The pregelatinized starch was $1.83{\times}10^{-3}mmol/mL{\cdot}min$ as a control. Reaction rate constant was a similar trend to initial reaction velocity.

Study on Influence Analysis of Radioactive Terror Scenarios by Weather Conditions (기상조건에 따른 방사능테러 시나리오 영향 분석)

  • Kim, Tae Woo;Jeon, Yeo Ryeong;Chang, Sunyoung;Kim, Yongmin
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.719-725
    • /
    • 2018
  • After 9/11 attacks in the U.S, Terrorism has increased the number of unspecified casualties through multi-use facility terror attacks compared to the past. The subsequent London bombings and the self-destruction of Pakistan increased people's fear and social anxiety. As international events have been held in Korea recently, awareness and concern over radioactive terrorism and security management of radioactive materials are increasing. In this paper, we compared the results of different meteorological conditions using HotSpot Code. After creating a possible terror scenario in Korea, sources likely to be use in RDD and Dirty bomb were investigated. The meteorological condition was selected by comparing the Pasquill-Gifford stability class with the most stable condition F and the most unstable condition A. The result value of the A and F condition through simulation were shown not to cause citizens to die from acute effects due to radiological effects. The range of radioactivity is different according to the wind speed and the meteorological stability, and the degree of radioactivity dilution is different according to meteorological conditions. Analysis results are expected to be used for initial response in the event of a radioactive terrorist attack.

Robust Filter Based Wind Velocity Estimation Method for Unpowered Air Vehicle Without Air Speed Sensor (대기 속도 센서가 없는 무추력 항공기의 강인 필터 기반의 바람 속도 추정 기법)

  • Park, Yong-gonjong;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.107-113
    • /
    • 2019
  • In this paper, a robust filter based wind velocity estimation algorithm without an air velocity sensor in an air vehicle is presented. The wind velocity is useful information for the air vehicle to perform precise guidance and control. In general, the wind velocity can be obtained by subtracting an air velocity which is obtained by an air velocity sensor such as a pitot-tube, and a ground velocity which is obtained by a navigation equipment. However, in order to simplify the configuration of the air vehicle, the wind estimation algorithm is necessary because the wind velocity can not be directly obtained if the air velocity measurement sensor is not used. At this time, the aerodynamic coefficient of the air vehicle changes due to the turbulence, which causes the uncertainty of the system model of the filter, and the wind estimation performance deteriorates. Therefore, in this study, we propose a wind estimation method using $H{\infty}$ filter to ensure robustness against aerodynamic coefficient uncertainty, and we confirmed through simulation that the proposed method improves the performance in the uncertainty of aerodynamic coefficient.

Motion Monitoring using Mask R-CNN for Articulation Disease Management (관절질환 관리를 위한 Mask R-CNN을 이용한 모션 모니터링)

  • Park, Sung-Soo;Baek, Ji-Won;Jo, Sun-Moon;Chung, Kyungyong
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.1-6
    • /
    • 2019
  • In modern society, lifestyle and individuality are important, and personalized lifestyle and patterns are emerging. The number of people with articulation diseases is increasing due to wrong living habits. In addition, as the number of households increases, there is a case where emergency care is not received at the appropriate time. We need information that can be managed by ourselves through accurate analysis according to the individual's condition for health and disease management, and care appropriate to the emergency situation. It is effectively used for classification and prediction of data using CNN in deep learning. CNN differs in accuracy and processing time according to the data features. Therefore, it is necessary to improve processing speed and accuracy for real-time healthcare. In this paper, we propose motion monitoring using Mask R-CNN for articulation disease management. The proposed method uses Mask R-CNN which is superior in accuracy and processing time than CNN. After the user's motion is learned in the neural network, if the user's motion is different from the learned data, the control method can be fed back to the user, the emergency situation can be informed to the guardian, and appropriate methods can be taken according to the situation.