• Title/Summary/Keyword: Control Parameter

Search Result 4,554, Processing Time 0.028 seconds

Unsteady Flow Rate Measurement by Using Hydraulic Pipeline Dynamics (유압관로의 동특성을 이용한 비정상 유량계측)

  • 김도태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.411-416
    • /
    • 1999
  • The measurement of unsteady flow rate is of vital importance to clarify and improve the dynamic characteristics in pipeline, hydraulic components and system. There is also demand for a real time flow sensor of ability to measure unsteady flow rate with high accuracy and fast response to realize feedback control of flow rate in fluid power systems. In this paper, we propose an approach for estimating unsteady flow rate through a pipeline and components under high pressure condition. In the method, unsteady flow rate is estimated by using hydraulic pipeline dynamics and the measured pressure values at two distant points along the pipeline. The distributed parameter model of hydraulic pipeline is applied with consideration of frequency dependent viscosity friction and unsteady velocity distribution at a cross section of a pipeline. By using the self-checking functions of the method, the validity is investigated by comparison with the measured and estimated pressure waveforms at the halfway section on the pipeline. The results show good agreement between the estimated flow rate waveforms and theroetical those under unsteady laminar flow conditions. the method proposed here is useful in estimating unsteady flow rate through an arbitray cross section in hydraulic pipeline and components without installing an instantaneous flowmeter.

  • PDF

A Study on Prediction for Top Bead Width using Radial Basis Function Network (방사형기저함수망을 이용한 표면 비드폭 예측에 관한 연구)

  • 손준식;김인주;김일수;김학형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.170-174
    • /
    • 2004
  • Despite the widespread use in the various manufacturing industries, the full automation of the robotic CO$_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an Radial basis function network model to predict the weld top-bead width as a function of key process parameters in the robotic CO$_2$ welding. and to compare the developed model and a simple neural network model using two different training algorithms in order to verify performance. of the developed model.

  • PDF

A Study on the Comparison Mechanical Properties of 3D Printing Prototypes with Laminating Direction (3D 프린팅 방식의 적층방향에 따른 시제품의 기계적 특성 비교에 관한 연구)

  • Park, Chan;Kim, Myung Hun;Hong, Sung Moo;Go, Jeung Sang;Shin, Bo Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.334-341
    • /
    • 2015
  • This paper summarizes the results of an investigation into the environmental factors that have an indirect impact on parts quality, as well as those process variables and modeling information that have a direct impact. The effects of strength, surface hardness, roughness, and accuracy of shape, that is, qualities that users generally need to know, were evaluated with laminating direction experimentally. The 3D printing methods used in this experiment were fused deposition modeling (FDM), stereolithography apparatus (SLA), selective laser sintering (SLS), 3D printing (3DP) and laminated object manufacturing (LOM). The goal was to achieve a high standard of quality control and product quality by optimizing the fabrication process.

Performance Evaluation of Wireless Network based on Mobile Multi-hop (모바일 다중 홉 기반의 무선 네트워크의 성능 평가)

  • Roh, Jae-Sung;Kim, Wan-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.634-639
    • /
    • 2008
  • In mobile communication networks, the main power consumption is due to the actual transmissions power. Therefore, power efficiency network structures have gained considerable importance in mobile multi-hop systems and networks in recent years. In this paper, the performance of mobile multi-hop wireless system with M-QAM signal and forward error control (FEC) technique are analyzed The FEC technique uses extra processing power related to encoding and decoding, it is need complex functions to be built into the communication node. The probability of receiving a correct bit and codeword for relaying a data frame over h hop relay station to the final station is evaluated as a function of channel parameter and number of hops, and the distance between the different station.

  • PDF

A Study on the Reaction Force Characteristics of the Gas Spring for the Automotive (자동차용 가스 스프링의 반력 특성에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • A gas spring provides support force for lifting, positioning, lowering, and counterbalancing weights. It offers a wide range of reaction force with a flat force characteristic, simple mounting, compact size, speed controlled damping, and cushioned end motion. The most common usage is as a support on a horizontally hinged automotive tail gate. However, its versatility and ease of use has been applied in many other industrial applications ranging from office equipment to off-road vehicles. The cylinder of a gas spring is filled with compressed nitrogen gas, which is applied with equal pressure on both sides of the piston. The surface area of the rod side of the piston is smaller than the opposite side, producing a pushing force. The magnitude of the reaction force is determined by the cross-sectional area of the piston rod and the internal pressure inside the cylinder. The reaction force is influenced by many design parameters such as initial chamber volume, diameter ratio, etc. In this paper, we investigated the reaction force characteristics and carried out parameter sensitivity analysis for the design parameters of a gas spring.

Effect of NaCl Addition on Rheological Behaviors of Commercial Gum-Based Food Thickener Used for Dysphagia Diets

  • Cho, Hyun-Moon;Yoo, Whachun;Yoo, Byoungseung
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.2
    • /
    • pp.137-142
    • /
    • 2015
  • Rheological properties of thickened fluids used for consumption by people with dysphagia (swallowing difficulty) are very sensitive to several factors, such as thickener type, temperature, pH, sugar, protein, and NaCl. In this study, steady and dynamic rheological properties of thickened water samples mixed with five commercial xanthan gum-based food thickeners (A~E) were studied in the presence of NaCl at different concentrations (0.3%, 0.6%, 0.9%, and 1.2%). The magnitudes of apparent viscosity (${\eta}_{a,50}$), consistency index (K), yield stress (${\sigma}_{oc}$), and dynamic moduli (G' and G") showed significant differences in rheological behaviors between thickened samples with various NaCl concentrations. Dynamic moduli values of all thickened samples, except for samples with thickener C, were much higher than those of the control (0% NaCl). All rheological parameter values (K, G', and G") in a thickener A were much higher than those in other thickeners. These results suggest that rheological properties of thickened samples containing NaCl are strongly affected by xanthan gum-NaCl interaction and depended on the type of thickener.

A Perceptual Rate Control for Variable Quantizer of Extended JPEG (확장 JPEG의 가변 양자화기를 위한 시각적 비트율 제어)

  • Yun, Seok-Jin;Park, kwang-Chae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.95-100
    • /
    • 1996
  • In this paper, we present an image coder using variable quantizer for newly proposed JPEG extensions which has been standardized as ISO/IEC 10918-3(ITU-T Rec. T.84). It is necessary to alleviate the blocking artifact which is more sensitive to human eye in view of the spatial frequency sensitivity. The blocking artifact arises in the lower activity area rather than in the higher area. Therefore variable quantizer use the horizontal and vertical derivatives for calculating the $8{\times}8$ block activity. We classified nonlinear quantizer parameter into 5 categories in order to finely quantize in the lower active region. As a result of simulation for various images, the proposed coder increases subjective and objective quality at a given bit rate.

  • PDF

Space and Time Sensor Fusion Using an Active Camera For Mobile Robot Navigation

  • Jin, Tae-Seok;Lee, Bong-Ki;Park, Soo-Min;Lee, Kwon-Soon;Lee, Jang-Myung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.127-132
    • /
    • 2002
  • This paper proposes a sensor-fusion technique where the data sets for the previous moments are properly transformed and fused into the current data sets to enable accurate measurement, such as, distance to an obstacle and location of the service robot itself. In the conventional fusion schemes, the measurement is dependent on the current data sets. As the results, more of sensors are required to measure a certain physical parameter or to improve the accuracy of the measurement. However, in this approach, instead of adding more sensors to the system the temporal sequence of the data sets are stored and utilized for the measurement improvement. Theoretical basis is illustrated by examples and the effectiveness is proved through the simulations. finally, the new space and time sensor fusion (STSF) scheme is applied to the control of a mobile robot in an unstructured environment as well as structured environment.

  • PDF

Impact of Duty Cycle in Wireless Sensor Networks (무선 센서 네트워크에서 Duty Cycle의 영향)

  • Sthapit, Pranesh;Pyun, Jae-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.854-857
    • /
    • 2008
  • Wireless sensor consists of an internal power source which has limited life time. Several MAC protocols have exploited scheduled sleep/listen cycles to conserve energy in sensor networks. Duty cycle is a user-adjustable parameter in low duty cycle MAC protocols, which determines the length of the sleep period in a frame. The sire of duty cycle has direct effect on the Performance of MAC Protocols. In this Paper, we simulated TEEM (A Traffic Aware, Energy Efficient MAC) and S-MAC in NS-2 with different duty cycle values and analyze how duty-cycle effects on the performance and energy consumption of both the protocols.

  • PDF

The Weldability of Laminated Stator Core for Motor by Pulsed Nd:YAG Laser [ I ] - The Effect of Processing Parameter on Weldability of Laser - (펄스 Nd:YAG 레이저를 이용한 모터용 스테이터 적층코어의 용접특성 [ I ] - 레이저 용접성에 미치는 가공변수의 영향 -)

  • Kim Jong-Do;Yoo Seung-Jo;Kim Jang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.629-635
    • /
    • 2006
  • Manufacture of motor by laser has been studying realization that was demands on market for lightening and miniaturization. Moreover. early in the 1980s. manufacture of parts for automobiles by laser welding was already successfully introduced. The purpose of this study was to develop production technology of the high quality laminated stator core for motor by pulsed Nd:YAG laser heat source. In the event of adjusting defocus and voltage to control humping in laser welding of the laminated core. sound bead could be obtained. but deep penetration was not. Therefore. explosive evaporating plasma was controlled by adjustment of peak power on pulse width. Particularly, because explosive evaporating plasma induced high peak power, made molten metal in keyhole scatter. a suitable adjustment of peak power was required to obtain sound bead. As a results of experiment. sound bead and deep penetration could be obtained.