• Title/Summary/Keyword: Control Law

Search Result 2,276, Processing Time 0.036 seconds

An Adaptive Flight Control Law Design for the ALFLEX Flight Control System

  • Imai, Kanta;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.148.5-148
    • /
    • 2001
  • In this report, an adaptive flight control law based on a linear-parameter-varying (LPV) model is presented for a flight control system. The control system is designed to track an output of a vehicle to a reference signal from the guidance system, which generates a reference flight path. The proposed adaptive control law adjusts the controller gains continuously on line as flight conditions change. The obtained adaptive controller guarantees global stability over a wide flight envelope. Computer simulation involving six-degree-of-freedom nonlinear flight dynamics is applied to Japan´s automatic landing flight experimental vehicle (ALFLEX) to examine the effectiveness of the proposed adaptive flight control law.

  • PDF

Comparison Study of Nonlinear CSAS Flight Control Law Design Using Dynamic Model Inversion and Classical Gain Scheduling (항공기 CSAS 설계를 위한 고전적 Gain Scheduling 기법과 Dynamic Model Inversion 비선형 기법의 비교 연구)

  • Ha, Cheol-Geun;Im, Sang-Su;Kim, Byeong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.574-581
    • /
    • 2001
  • In this paper we design and evaluate the longitudinal nonlinear N(aub)z-CSAS(Command and Stability Augmentation System) flight control law in \"DMI(Dynamic Model Inversion)-method\" and classical \"Gain Scheduling-method\", respectively, to meet the handling quality requirements associated with push-over pull-up maneuver. It is told that the flight control law designed in \"DM-method\" is adequate to the full flight regime without gain scheduling and is efficient to produce the time response shape desired to the handling quality requirements. On the contrary, the flight control law designed in \"Gain Scheduling-method\" is easy to be implemented in flight control computer and insensitive to variation of the actuator model characteristics.n of the actuator model characteristics.

  • PDF

Control of Semi-Active Suspensions for Commercial Vehicles (상용 차량용 반능동 현가 시스템의 제어)

  • Yi, K.;Jung, J.C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.98-106
    • /
    • 1998
  • In this study a control law and performance potential of semi-active suspensions for a tractor/semi-trailer have been investigated. The control law for airbag semi-active suspensions modeled in this study is developed using feedback linearization and Linear Quadratic (LQ) optimal control method. Inherent nonlinearity of the airbag suspensions has been considered in the control law development. It has been shown that the proposed semi-active control law provides better performance than that of well known sky-hook damping control strategy.

  • PDF

A Study on the Design and Validation of Switching Control Law (전환제어법칙 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2011
  • The flight control law designed for prototype aircraft often leads to degraded stability and performance, although developed control law verify by non-real time simulation and pilot based evaluations. Therefore, the proper evaluation methods should be applied such that flight control law designed can be verified in real flight environment. The one proposed in this paper is IFS (In-Flight Simulator). Currently, this system has been implemented into the F-18 HARV (High Angle of Attack Research Vehicle), SU-27 and F-16 VISTA (Variable stability In flight Simulation Test Aircraft) programs. The IFS necessary switching control law such as fader logic and integrator stand-by mode to reduce abrupt transient and minimize the integrator effect for each flight control laws switching. This paper addresses the concept of switching mechanism with fader logic of "TFS (Transient Free Switch)" and stand-by mode of "feedback type" based on SSWM (Software Switching Mechanism). And the result of real-time pilot evaluation reveals that the aircraft is stable for inter-conversion of flight control laws and transient response is minimized.

Iterative learning control for discrete-time feedback systems and its applicationto a direct drive SCARA robot (이산시간 궤환 시스템에 대한 반복학습제어 및 직접구동형 SCARA 로보트에의 응용)

  • Yeo, Seong-Won;Kim, Jae-Oh;Hwang, Gun;Kim, Sung-Hyun;Kim, Do-Hyun;Ahn, Hyun-Sik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.7
    • /
    • pp.56-65
    • /
    • 1997
  • In this paper, we propose a reference input odification-type iterative learning control law for a class of discrete-time nonlinear systems and prove the convergence of the output error. We can get the high-precision in case of the trajectroy control when the proposed control law is properly combined with a feedback controller, and we can easily implement the learning control law compared to the control input modification-type learning control law. To show the validity and the convergence perfodrmance of the proposed control law, we perform experimentations on the trajectroy control and rejection of periodic disturbance for a 2-axis SCARA-type direct drive robot.

  • PDF

Time-optimal multistage controllers from the theory of dynamical cell-to-cell mappings

  • Yoon, Joong-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.118-123
    • /
    • 1989
  • This work deals with fast-to-compute global control laws for time-optimal motion of strongly nonlinear dynamic systems like resolute robots. the theory of cell-to-cell mappings for dynamical systems offer the possibility of doing the vast majority of the control law computation offline in case of time optimization with constrained inputs. These cells result from a coarse discretization of likely swaths of state space into a set of nonuniform, contiguous volumes of relatively simple shapes. Once the cells have been designed, the bang-bang schedules for the inputs are determined for all likely starting cells and terminating cells. the resulting control law is an open-loop optimal control law with feedback monitoring and correction.

  • PDF

Optimal Waypoint Guidance for Unmanned Aerial Vehicles (UAVs) (무인기를 위한 최적 경로점 유도)

  • Ryoo, Chang-Kyung;Shin, Hyo-Sang;Tahk, Min-Jea
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.240-245
    • /
    • 2005
  • In this paper, planar waypoint guidance synthesis for UAVs using the LQ optimal impact-angle-control guidance law is proposed. We prove that the energy-optimal control problem with the constraint of passing through the waypoints is equivalent to the problem of finding the optimal pass angles on each waypoint of the optimal impact-angle-control law. The optimal pass angles can be obtained as a numerical solution of the simple pass angle optimization problem that requires neither input parameterization nor constraints. The trajectory obtained by applying the optimal impact-angle-control law with these optimal pass angles becomes energy optimal.

GUIDANCE LAW FOR IMPACT TIME AND ANGLE CONTROL WITH CONTROL COMMAND RESHAPING

  • LEE, JIN-IK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.271-287
    • /
    • 2015
  • In this article, a more generalized form of the impact time and angle control guidance law is proposed based on the linear quadratic optimal control methodology. For the purpose on controlling an additional constraint such as the impact time, we introduce an additional state variable that is defined to be the jerk (acceleration rate). Additionally, in order to provide an additional degree of freedom in choosing the guidance gains, the performance index that minimizes the control energy weighted by an arbitrary order of time-to-go is considered in this work. First, the generalized form of the impact angle control guidance law with an additional term which is used for the impact time control is derived. And then, we also determine the additional term in order to achieve the desired impact time. Through numbers of numerical simulations, we investigate the superiority of the proposed guidance law compared to previous guidance laws. In addition, a salvo attack scenario with multiple missile systems is also demonstrated.

Design of a Digital Adaptive Flight Control Law for the ALFLEX

  • Ito, Hideya;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.519-524
    • /
    • 2003
  • In this report, a longitudinal adaptive flight control law is presented for the automatic landing system of a Japanese automatic landing flight experiment vehicle (ALFLEX). The longitudinal adaptive flight control law is designed to track an output of the vehicle to a guidance signal from the guidance portion of the automatic landing system. The proposed adaptive control law in the attitude control portion adjusts the controller gains continuously online as flight conditions change, in spite of the existence of unmodeled dynamics. The number of the controller gains to be adjusted is decreased to 1/2 from the previous studies. Computer simulation involving six-degree-of-freedom (DOF) nonlinear flight dynamics is performed to examine the effectiveness of the proposed adaptive control law. In order to verify the influence of the dispersion of the initial conditions, the Monte Carlo simulation is also applied. The initial conditions are more widely dispersed than the previous studies. As a result, except under the unsuitable initial conditions, the ALFLEX successfully landed on the runway.

  • PDF

Three-dimensional Guidance Law for Formation Flight of UAV

  • Min, Byoung-Mun;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.463-467
    • /
    • 2005
  • In this paper, the guidance law applicable to formation flight of UAV in three-dimensional space is proposed. The concept of miss distance, which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the guidance commands of the wingmen. The propose guidance law is easily integrated into the existing flight control system because the guidance commands are given in terms of velocity, flight path angle and heading angle to form the prescribed formation. In this guidance law, communication is required between the leader and the wingmen to achieve autonomous formation. The wingmen are only required the current position and velocity information of the leader vehicle. The performance of the proposed guidance law is evaluated using the complete nonlinear 6-DOF aircraft system. This system is integrated with nonlinear aerodynamic and engine characteristics, actuator servo limitations for control surfaces, various stability and control augmentation system, and autopilots. From the nonlinear simulation results, the new guidance law for formation flight shows that the vehicles involved in formation flight are perfectly formed the prescribed formation satisfying the several constraints such as final velocity, flight path angle, and heading angle.

  • PDF