• Title/Summary/Keyword: Control Allocation

Search Result 886, Processing Time 0.031 seconds

A Resource Allocation Model for Data QC Activities Using Cost of Quality (품질코스트를 이용한 데이터 QC 활동의 자원할당 모형 연구)

  • Lee, Sang-Cheol;Shin, Wan-Seon
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.128-138
    • /
    • 2011
  • This research proposes a resource allocation model of Data QC (Quality Control) activities using COQ (Cost of Quality). The model has been developed based on a series of research efforts such as COQ classifications, weight determination of Data QC activities, and an aggregation approach between COQ and Data QC activities. In the first stage of this research, COQ was divided into the four typical classifications (prevention costs, appraisal costs, internal failure costs and external failure costs) through the opinions from five professionals in Data QC. In the second stage, the weights of Data QC activities were elicited from the field professionals. An aggregation model between COQ and Data QC activities has been then proposed to help the practitioners make a resource allocation strategy. DEA (Data Envelopment Analysis) was utilized for locating efficient decision points. The proposed resource allocation model has been validated using the case of Korea national defense information system. This research is unique in that it applies the concept of COQ to the data management for the first time and that it demonstrates a possible contribution to a real world case for budget allocation of national defense information.

A Bit Allocation Method Based on Proportional-Integral-Derivative Algorithm for 3DTV

  • Yan, Tao;Ra, In-Ho;Liu, Deyang;Zhang, Qian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1728-1743
    • /
    • 2021
  • Three-dimensional (3D) video scenes are complex and difficult to control, especially when scene switching occurs. In this paper, we propose two algorithms based on an incremental proportional-integral-derivative (PID) algorithm and a similarity analysis between views to improve the method of bit allocation for multi-view high efficiency video coding (MV-HEVC). Firstly, an incremental PID algorithm is introduced to control the buffer "liquid level" to reduce the negative impact on the target bit allocation of the view layer and frame layer owing to the fluctuation of the buffer "liquid level". Then, using the image similarity between views is used to establish, a bit allocation calculation model for the multi-view video main viewpoint and non-main viewpoint is established. Then, a bit allocation calculation method based on hierarchical B frames is proposed. Experimental simulation results verify that the algorithm ensures a smooth transition of image quality while increasing the coding efficiency, and the PSNR increases by 0.03 to 0.82dB while not significantly increasing the calculation complexity.

Joint wireless and computational resource allocation for ultra-dense mobile-edge computing networks

  • Liu, Junyi;Huang, Hongbing;Zhong, Yijun;He, Jiale;Huang, Tiancong;Xiao, Qian;Jiang, Weiheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3134-3155
    • /
    • 2020
  • In this paper, we study the joint radio and computational resource allocation in the ultra-dense mobile-edge computing networks. In which, the scenario which including both computation offloading and communication service is discussed. That is, some mobile users ask for computation offloading, while the others ask for communication with the minimum communication rate requirements. We formulate the problem as a joint channel assignment, power control and computational resource allocation to minimize the offloading cost of computing offloading, with the precondition that the transmission rate of communication nodes are satisfied. Since the formulated problem is a mixed-integer nonlinear programming (MINLP), which is NP-hard. By leveraging the particular mathematical structure of the problem, i.e., the computational resource allocation variable is independent with other variables in the objective function and constraints, and then the original problem is decomposed into a computational resource allocation subproblem and a joint channel assignment and power allocation subproblem. Since the former is a convex programming, the KKT (Karush-Kuhn-Tucker) conditions can be used to find the closed optimal solution. For the latter, which is still NP-hard, is further decomposed into two subproblems, i.e., the power allocation and the channel assignment, to optimize alternatively. Finally, two heuristic algorithms are proposed, i.e., the Co-channel Equal Power allocation algorithm (CEP) and the Enhanced CEP (ECEP) algorithm to obtain the suboptimal solutions. Numerical results are presented at last to verify the performance of the proposed algorithms.

Fault-Tolerant Control System for Unmanned Aerial Vehicle Using Smart Actuators and Control Allocation (지능형 액추에이터와 제어면 재분배를 이용한 무인항공기 고장대처 제어시스템)

  • Yang, In-Seok;Kim, Ji-Yeon;Lee, Dong-Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.967-982
    • /
    • 2011
  • This paper presents a FTNCS (Fault-Tolerant Networked Control System) that can tolerate control surface failure and packet delay/loss in an UAV (Unmanned Aerial Vehicle). The proposed method utilizes the benefits of self-diagnosis by smart actuators along with the control allocation technique. A smart actuator is an intelligent actuation system combined with microprocessors to perform self-diagnosis and bi-directional communications. In the event of failure, the smart actuator provides the system supervisor with a set of actuator condition data. The system supervisor then compensate for the effect of faulty actuators by re-allocating redundant control surfaces based on the provided actuator condition data. In addition to the compensation of faulty actuators, the proposed FTNCS also includes an efficient algorithm to deal with network induced delay/packet loss. The proposed algorithm is based on a Lagrange polynomial interpolation method without any mathematical model of the system. Computer simulations with an UAV show that the proposed FTNCS can achieve a fast and accurate tracking performance even in the presence of actuator faults and network induced delays.

Multicast address allocation for IPv6 (IPv6에서 멀티캐스트 어드레스 할당방법)

  • 최성미;김상언;홍경표
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.118-121
    • /
    • 1999
  • Multicast addresses cannot be permanently assigned to particular application or group combination, but need to be available for re-use. So, this requires a dynamic multicast address allocation and release mechanism. For a dynamic multicast address allocation and release mechanism, we must consider low blocking probability, low delay, low control traffic overhead. In this paper, we suggest a efficient dynamic multicast address allocation and release mechanism based on the multicast scope

  • PDF

Collaborative Sub-channel Allocation with Power Control in Small Cell Networks

  • Yang, Guang;Cao, Yewen;Wang, Deqiang;Xu, Jian;Wu, Changlei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.611-627
    • /
    • 2017
  • For enhancing the coverage of wireless networks and increasing the spectrum efficiency, small cell networks (SCNs) are considered to be one of the most prospective schemes. Most of the existing literature on resource allocation among non-cooperative small cell base stations (SBSs) has widely drawn close attention and there are only a small number of the cooperative ideas in SCNs. Based on the motivation, we further investigate the cooperative approach, which is formulated as a coalition formation game with power control algorithm (CFG-PC). First, we formulate the downlink sub-channel resource allocation problem in an SCN as a coalition formation game. Pareto order and utilitarian order are applied to form coalitions respectively. Second, to achieve more availability and efficiency power assignment, we expand and solve the power control using particle swarm optimization (PSO). Finally, with our proposed algorithm, each SBS can cooperatively work and eventually converge to a stable SBS partition. As far as the transmit rate of per SBS and the system rate are concerned respectively, simulation results indicate that our proposed CFG-PC has a significant advantage, relative to a classical coalition formation algorithm and the non-cooperative case.

A Study on the SIL Allocation and Demonstration for Train Control System (열차제어시스템 SIL할당 및 입증에 관한 연구)

  • Shin, Duc-Ko;Baek, Jong-Hyen;Lee, Kang-Mi;Lee, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.855-859
    • /
    • 2009
  • In this paper, we introduce the estimation method by Risk or SIL(Safety Integrity Level) for the criterion of safety assurance and summarize each application method and target. IEC 62278(EN 50126) which is international standard for the specification and verification of the railway system RAMS indicate a criterion of safety assurance. Especially, it recommend the safety verification by continuous verification as the order of requirement establishment, design, manufacture, installation, operation, and maintenance for the equipment not easy to quantify the operation environment. In this paper, we study the SIL requirement allocation method relating to internal new system development and existing system improvement by analysing SIL recommendations which were used to understand SIL for a train control equipment in 1990s in IRSE and theoretically their allocation background. This paper help the safety management of Korea train control system to develope the quantitative management procedure as international level by analyzing the SIL requirement allocation by operation agency and the right SIL verification procedure by manufacture and indicating the example to assure safety because it is necessary for improvement and localization for the Korea train control system having highly dependence on aboard technology.

  • PDF

Load Dispatching Control of Multiple-Parallel-Converters Rectifier to Maximize Conversion Efficiency

  • Orihara, Dai;Saitoh, Hiroumi;Higuchi, Yuji;Babasaki, Tadatoshi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1132-1136
    • /
    • 2014
  • In the context of increasing electric energy consumption in a data center, energy efficiency improvement is strongly emphasized. In a data center, electric energy is largely consumed by DC power supply system, which is based on a rectifier composed by multiple parallel converters. Therefore, rectifier efficiency must be improved for minimizing loss of DC power supply system. Rectifier efficiency can be modulated by load allocation to converters because converter efficiency depends on input AC power. In this paper, we propose a new control method to maximize rectifier efficiency. The method can control load allocation to converters by introducing active power converter control scheme and start-and-stop of converters. In order to illustrate optimal load allocations in a rectifier, a maximization problem of rectifier efficiency is formulated as a nonlinear optimization one. The problem is solved by Lagrangian relaxation method and the computation results provide the validity of proposed method.

Performance Analysis of Buffer Allocation Schemes for Controlled Transfer Service in ATM Networks (ATM 망에서 CT 서비스를 위한 버퍼 할당 방식의 성능 분석)

  • 김병철;조유제안윤영권율
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.261-264
    • /
    • 1998
  • Controlled transfer (CT) capability, a new ATM transfer capability (ATC) for high-speed data applications which using credit-based flow control, has recently been proposed and studied in ITU-T. In this paper, we review the existing dyanmic buffer allocation schemes and propose an improved scheme. Also, we compare the performances of the existing buffer allocation methods such as static allocation, flow controlled virtual channels (FCVC), and zero queueing flow control (ZQFC) with the proposed method through simulation. Simulation results show that the proposed scheme exhibits a better performance than the existing schemes in terms of throughput, fairness, queue length and link utilization.

  • PDF

A software-controlled bandwidth allocation scheme for multiple router on-chip-networks

  • Bui, Phan-Duy;Lee, Chanho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1203-1207
    • /
    • 2019
  • As the number of IP cores has been increasing in a System-on-Chip (SoC), multiple routers are included in on-chip-networks. Each router has its own arbitration policy and it is difficult to obtain a desired arbitration result by combining multiple routers. Allocating desired bandwidths to the ports across the routers is more difficult. In this paper, a guaranteed bandwidth allocation scheme using an IP-level QoS control is proposed to overcome the limitations of existing local arbitration policies. Each IP can control the priority of a packet depending on the data communication requirement within the allocated bandwidth. The experimental results show that the proposed mechanism guarantees for IPs to utilize the allocated bandwidth in multiple router on-chip-networks. The maximum error rate of bandwidth allocation of the proposed scheme is only 1.9%.