• Title/Summary/Keyword: Contrast-enhanced ultrasound

Search Result 38, Processing Time 0.022 seconds

Contrast-Enhanced Spectral Mammography Versus Ultrasonography: Diagnostic Performance in Symptomatic Patients with Dense Breasts

  • Zhongfei Lu;Cuijuan Hao;Yan Pan;Ning Mao;Xin Wang;Xundi Yin
    • Korean Journal of Radiology
    • /
    • v.21 no.4
    • /
    • pp.442-449
    • /
    • 2020
  • Objective: To compare the diagnostic performance of contrast-enhanced spectral mammography (CESM) versus ultrasonography (US) in symptomatic patients with dense breasts, while using histology as the gold standard. Materials and Methods: After obtaining approval from the local ethics board, this prospective study collected data from patients with symptomatic breasts who underwent CESM and US examinations from May 1, 2017 to September 30, 2017. We then selected those with dense breasts and pathological results as our sample population. Both CESM and US results were classified by a radiologist through the Breast Imaging Reporting and Data System, and the results were compared with their corresponding histological results. The chi-square test was conducted to compare the diagnostic performance of CESM and US, and the receiver operating characteristic curves for the two imaging modalities were obtained. Results: A total of 131 lesions from 115 patients with dense breasts were included in this study. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were 93.8%, 88.1%, 88.2%, 93.7%, and 90.8% for CESM, and 90.6%, 82.1%, 82.9%, 90.2%, and 86.3% for US, respectively. The p values for sensitivity, specificity, PPV, NPV, and accuracy were 0.687, 0.388, 0.370, 0.702, and 0.238, respectively. The area under the curve of CESM (0.917) was comparable with that of US (0.884); however, the differences between CESM and US were not statistically significant (p = 0.225). Eight false-positive cases and 4 false-negative cases for breast cancer were found in CESM, while 12 false-positive cases and 6 false-negative cases were found in US. Conclusion: The diagnostic performances of CESM and US are comparable in symptomatic women with dense breasts; however, the routine use of additional US imaging is questionable for lesions that can be detected by CESM.

Quantitative Analysis of Microperfusion in Contrast-Induced Nephropathy Using Contrast-Enhanced Ultrasound: An Animal Study

  • Nieun Seo;Hyewon Oh;Hyung Jung Oh;Yong Eun Chung
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.801-810
    • /
    • 2021
  • Objective: To investigate imaging biomarkers of microperfusion in contrast-induced nephropathy (CIN) using contrast-enhanced ultrasound (CEUS). Materials and Methods: The CIN model was fabricated by administering indomethacin (10 mg/kg), L-NAME (15 mg/kg), and iopamidol (10 mL/kg) to Sprague-Dawley rats. After 24 hours, CEUS was performed on CIN (n = 6) and control (n = 6) rats with sulphur hexafluoride microbubbles (SonoVue). From time-intensity curves obtained from the kidney arriving time (AT), acceleration time (AC), time to peak (TTP), and peak enhancement (PE) were measured and compared between the groups. After CEUS, the rats were sacrificed, and cell apoptosis markers were evaluated to confirm the development of CIN. Results: Among CEUS parameters, AT (7.8 ± 1.6 vs. 4.2 ± 0.5 s, p = 0.002), AC (4.7 ± 1.4 vs. 2.0 ± 0.4 s, p = 0.002), and TTP (12.5 ± 2.9 vs. 6.2 ± 0.6 s, p = 0.002) were significantly prolonged in the CIN group compared to controls. PE was significantly higher in the control group than in the CIN group (17.1 ± 1.9 vs. 12.2 ± 2.0 dB, p = 0.004). In kidney tissue, mRNA and protein levels of the apoptotic makers were significantly higher in the CIN group than in the control group (p = 0.003 and p = 0.002). Conclusion: CEUS parameters can be used as imaging biomarkers for microperfusion in CIN. In rats with CIN, AT, AC, and TTP were significantly prolonged, while PE was significantly lower compared to controls.

Contrast Enhanced Ultrasonography and CT Features of Gastrointestinal Stromal Tumor in a Dog

  • Saran Chhoey;Soyeon Kim;Kroesna Kang;Sath Keo;Jihye Choi
    • Journal of Veterinary Clinics
    • /
    • v.40 no.5
    • /
    • pp.375-381
    • /
    • 2023
  • A large abdominal mass was incidentally found in a 13-year-old mixed-breed dog and was confirmed to be a cecal gastrointestinal stromal tumor (GIST). Contrast-enhanced ultrasound and post-contrast computed tomography (CT) showed mild contrast enhancement of the mass, indicating low blood flow. The tumor origin was determined to be the cecum by identifying the vessels supplying the mass on post-contrast CT. The exophytic growth of the tumor left the cecal lumen intact without obstruction. This report described the CEUS and CT perfusion of the cecal GIST and perfusion evaluation can help diagnose and characterize GISTs in dogs.

Dynamic Parameter Visualization and Noise Suppression Techniques for Contrast-Enhanced Ultrasonography (조영증강 초음파진단을 위한 동적 파라미터 가시화기법 및 노이즈 개선기법)

  • Kim, Ho-Joon
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.910-918
    • /
    • 2015
  • This paper presents a parameter visualization technique to overcome the limitation of the naked eye in contrast-enhanced ultrasonography. A method is also proposed to compensate for the distortion and noise in ultrasound image sequences. Meaningful parameters for diagnosing liver disease can be extracted from the dynamic patterns of the contrast enhancement in ultrasound images. The visualization technique can provide more accurate information by generating a parametric image from the dynamic data. Respiratory motions and noise from micro-bubble in ultrasound data may cause a degradation of the reliability of the diagnostic parameters. A multi-stage algorithm for respiratory motion tracking and an image enhancement technique based on the Markov Random Field are proposed. The usefulness of the proposed methods is empirically discussed through experiments by using a set of clinical data.

A method for ultrasound image edge enhancement by using Probabilistic edge map (초음파 진단영상 대조도 개선을 위한 확률 경계 맵을 이용한 연구)

  • Choi, Woo-hyuk;Park, Won-hwan;Park, Sungyun
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Ultrasonic imaging is the most widely modality among modern imaging device for medical diagnosis. Nevertheless, medical ultrasound images suffer from speckle noise and low contrast. In this paper, we propose probabilistic edge map for ultrasound image edge enhancement using automatic alien algorithm. The proposed method used applied speckle reduced ultrasound imaging for edge improvement using sequentially acquired ultrasound imaging. To evaluate the performance of method, the similarity between the reference and edge enhanced image was measured by quantity analysis. The experimental results show that the proposed method considerably improves the image quality with region edge enhancement.

Ultrasound Image Enhancement Based on Automatic Time Gain Compensation and Dynamic Range Control

  • Lee, Duh-Goon;Kim, Yong-Sun;Ra, Jong-Beom
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.294-299
    • /
    • 2007
  • For efficient and accurate diagnosis of ultrasound images, appropriate time gain compensation(TGC) and dynamic range(DR) control of ultrasound echo signals are important. TGC is used for compensating the attenuation of ultrasound echo signals along the depth, and DR controls the image contrast. In recent ultrasound systems, these two factors are automatically set by a system and/or manually adjusted by an operator to obtain the desired image quality on the screen. In this paper, we propose an algorithm to find the optimized parameter values far TGC and DR automatically. In TGC optimization, we determine the degree of attenuation compensation along the depth by dividing an image into vertical strips and reliably estimating the attenuation characteristic of ultrasound signals. For DR optimization, we define a novel cost function by properly using the characteristics of ultrasound images. We obtain experimental results by applying the proposed algorithm to a real ultrasound(US) imaging system. The results verify that the proposed algorithm automatically sets values of TGC and DR in real-time such that the subjective quality of the enhanced ultrasound images may be sufficiently high for efficient and accurate diagnosis.

Value of Intraplaque Neovascularization on Contrast-Enhanced Ultrasonography in Predicting Ischemic Stroke Recurrence in Patients With Carotid Atherosclerotic Plaque

  • Zhe Huang;Xue-Qing Cheng;Ya-Ni Liu;Xiao-Jun Bi;You-Bin Deng
    • Korean Journal of Radiology
    • /
    • v.24 no.4
    • /
    • pp.338-348
    • /
    • 2023
  • Objective: Patients with a history of ischemic stroke are at risk for a second ischemic stroke. This study aimed to investigate the relationship between carotid plaque enhancement on perfluorobutane microbubble contrast-enhanced ultrasonography (CEUS) and future recurrent stroke, and to determine whether plaque enhancement can contribute to risk assessment for recurrent stroke compared with the Essen Stroke Risk Score (ESRS). Materials and Methods: This prospective study screened 151 patients with recent ischemic stroke and carotid atherosclerotic plaques at our hospital between August 2020 and December 2020. A total of 149 eligible patients underwent carotid CEUS, and 130 patients who were followed up for 15-27 months or until stroke recurrence were analyzed. Plaque enhancement on CEUS was investigated as a possible risk factor for stroke recurrence and as a possible adjunct to ESRS. Results: During follow-up, 25 patients (19.2%) experienced recurrent stroke. Patients with plaque enhancement on CEUS had an increased risk of stroke recurrence events (22/73, 30.1%) compared to those without plaque enhancement (3/57, 5.3%), with an adjusted hazard ratio (HR) of 38.264 (95% confidence interval [CI]:14.975-97.767; P < 0.001) according to a multivariable Cox proportional hazards model analysis, indicating that the presence of carotid plaque enhancement was a significant independent predictor of recurrent stroke. When plaque enhancement was added to the ESRS, the HR for stroke recurrence in the high-risk group compared to that in the low-risk group (2.188; 95% CI, 0.025-3.388) was greater than that of the ESRS alone (1.706; 95% CI, 0.810-9.014). A net of 32.0% of the recurrence group was reclassified upward appropriately by the addition of plaque enhancement to the ESRS. Conclusion: Carotid plaque enhancement was a significant and independent predictor of stroke recurrence in patients with ischemic stroke. Furthermore, the addition of plaque enhancement improved the risk stratification capability of the ESRS.

Current Landscape and Future Perspectives of Abbreviated MRI for Hepatocellular Carcinoma Surveillance

  • Hyo Jung, Park;Nieun Seo;So Yeon Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.6
    • /
    • pp.598-614
    • /
    • 2022
  • While ultrasound (US) is considered an important tool for hepatocellular carcinoma (HCC) surveillance, it has limited sensitivity for detecting early-stage HCC. Abbreviated MRI (AMRI) has recently gained popularity owing to better sensitivity in its detection of early-stage HCC than US, while also minimizing the time and cost in comparison to complete contrast-enhanced MRI, as AMRI includes only a few essential sequences tailored for detecting HCC. Currently, three AMRI protocols exist, namely gadoxetic acid-enhanced hepatobiliary-phase AMRI, dynamic contrast-enhanced AMRI, and non-enhanced AMRI. In this study, we discussed the rationale and technical details of AMRI techniques for achieving optimal surveillance performance. The strengths, weaknesses, and current issues of each AMRI protocol were also elucidated. Moreover, we scrutinized previously performed AMRI studies regarding clinical and technical factors. Reporting and recall strategies were discussed while considering the differences in AMRI protocols. A risk-stratified approach for the target population should be taken to maximize the benefits of AMRI and the cost-effectiveness should be considered. In the era of multiple HCC surveillance tools, patients need to be fully informed about their choices for better adherence to a surveillance program.

Usefulness of ultrasound contrast media for cardiac output measurement with echocardiography

  • Yun, Je Woong;Yeon, Seong Chan;Lee, Hee Chun
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.1
    • /
    • pp.47-52
    • /
    • 2015
  • The purpose of this study was to determine if contrast media would enhance visualization of the endocardium for assessment of left ventricle (LV) function. In addition, differences between pre- and post-contrast evaluation for the cardiac output measurements including the modified Simpson's method and automated contour tracking (ACT) method were examined. Ten clinically healthy adult beagle dogs (three males and seven females) between 2~3 years old and weighing 6.6~10.8 kg were used. Echocardiographic examinations were performed to compare pre- and post-contrast LV endocardium visualization using a segmental scoring method. Two different methods for measuring cardiac output were also compared. LV visualization was significantly enhanced in post-contrast echocardiography (p < 0.01). Significant differences between pre- and post-contrast measurements for the modified Simpson's method (p < 0.05) were also observed. No significant difference was found for the ACT method. Contrast echocardiography provides better LV chamber opacification and significantly improves wall segment visualization. Furthermore, contrast echocardiography for measuring cardiac output is helpful for the modified Simpson's method.

Medical Parameter Extraction Using Time-Density Data in Contrast-Enhanced Ultrasound Image Sequence (조영증강 초음파영상에서 밀도변화 데이터를 이용한 진단 파라미터 추출 기법)

  • Lee, Jun-Yong;Jung, Joong-Eun;Kim, Ho-Joon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.7
    • /
    • pp.297-300
    • /
    • 2015
  • In medical ultrasonography, transit time and contrast enhancement patterns are considered as important parameters to analyze liver diseases. In many recent researches, time-intensity curves(TIC) have been used for calculating the transit time of the contrast agents. However, the intensity curve may include the variations which are caused by the micro-bubble effect of contrast agents. In this paper, we propose a complementary approach to diagnostic parameter extraction which utilizes a density information as well as the intensity data. The proposed technique improves the accuracy in extraction of the transit time and velocity of contrast agents for detection and characterization of focal liver lesions. Through the experiments using a set of clinical data, we show that the proposed methods can improve the reliability of the parametric image data.