DOI QR코드

DOI QR Code

Quantitative Analysis of Microperfusion in Contrast-Induced Nephropathy Using Contrast-Enhanced Ultrasound: An Animal Study

  • Nieun Seo (Department of Radiology, Severance Hospital, Yonsei University College of Medicine) ;
  • Hyewon Oh (Department of Radiology, Severance Hospital, Yonsei University College of Medicine) ;
  • Hyung Jung Oh (Department of Nephrology, Sheikh Khalifa Specialty Hospital) ;
  • Yong Eun Chung (Department of Radiology, Severance Hospital, Yonsei University College of Medicine)
  • Received : 2020.05.08
  • Accepted : 2020.09.17
  • Published : 2021.05.01

Abstract

Objective: To investigate imaging biomarkers of microperfusion in contrast-induced nephropathy (CIN) using contrast-enhanced ultrasound (CEUS). Materials and Methods: The CIN model was fabricated by administering indomethacin (10 mg/kg), L-NAME (15 mg/kg), and iopamidol (10 mL/kg) to Sprague-Dawley rats. After 24 hours, CEUS was performed on CIN (n = 6) and control (n = 6) rats with sulphur hexafluoride microbubbles (SonoVue). From time-intensity curves obtained from the kidney arriving time (AT), acceleration time (AC), time to peak (TTP), and peak enhancement (PE) were measured and compared between the groups. After CEUS, the rats were sacrificed, and cell apoptosis markers were evaluated to confirm the development of CIN. Results: Among CEUS parameters, AT (7.8 ± 1.6 vs. 4.2 ± 0.5 s, p = 0.002), AC (4.7 ± 1.4 vs. 2.0 ± 0.4 s, p = 0.002), and TTP (12.5 ± 2.9 vs. 6.2 ± 0.6 s, p = 0.002) were significantly prolonged in the CIN group compared to controls. PE was significantly higher in the control group than in the CIN group (17.1 ± 1.9 vs. 12.2 ± 2.0 dB, p = 0.004). In kidney tissue, mRNA and protein levels of the apoptotic makers were significantly higher in the CIN group than in the control group (p = 0.003 and p = 0.002). Conclusion: CEUS parameters can be used as imaging biomarkers for microperfusion in CIN. In rats with CIN, AT, AC, and TTP were significantly prolonged, while PE was significantly lower compared to controls.

Keywords

Acknowledgement

This study was supported by a faculty research grant of Yonsei University College of Medicine (6-2017-0070).

References

  1. Murphy SW, Barrett BJ, Parfrey PS. Contrast nephropathy. J Am Soc Nephrol 2000;11:177-182
  2. Parfrey PS, Griffiths SM, Barrett BJ, Paul MD, Genge M, Withers J, et al. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N Engl J Med 1989;320:143-149
  3. Abu Jawdeh BG, Kanso AA, Schelling JR. Evidence-based approach for prevention of radiocontrast-induced nephropathy. J Hosp Med 2009;4:500-506
  4. Stacul F, Van der Molen AJ, Reimer P, Webb JA, Thomsen HS, Morcos SK, et al. Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol 2011;21:2527-2541
  5. Balemans CE, Reichert LJ, van Schelven BI, van den Brand JA, Wetzels JF. Epidemiology of contrast material-induced nephropathy in the era of hydration. Radiology 2012;263:706-713
  6. Weisbord SD, Mor MK, Resnick AL, Hartwig KC, Palevsky PM, Fine MJ. Incidence and outcomes of contrast-induced AKI following computed tomography. Clin J Am Soc Nephrol 2008;3:1274-1281
  7. Oh HJ, Kim S, Park JT, Kim SJ, Han SH, Yoo TH, et al. Baseline chloride levels are associated with the incidence of contrast-associated acute kidney injury. Sci Rep 2017;7:17431
  8. Scharnweber T, Alhilali L, Fakhran S. Contrast-induced acute kidney injury: pathophysiology, manifestations, prevention, and management. Magn Reson Imaging Clin N Am 2017;25:743-753
  9. McCullough PA, Choi JP, Feghali GA, Schussler JM, Stoler RM, Vallabahn RC, et al. Contrast-induced acute kidney injury. J Am Coll Cardiol 2016;68:1465-1473
  10. Zhang B, Dong Y, Guo B, Chen W, Ouyang F, Lian Z, et al. Application of noninvasive functional imaging to monitor the progressive changes in kidney diffusion and perfusion in contrast-induced acute kidney injury rats at 3.0 T. Abdom Radiol (NY) 2018;43:655-662
  11. Liang L, Chen WB, Chan KW, Li YG, Zhang B, Liang CH, et al. Using intravoxel incoherent motion MR imaging to study the renal pathophysiological process of contrast-induced acute kidney injury in rats: comparison with conventional DWI and arterial spin labelling. Eur Radiol 2016;26:1597-1605
  12. Granata A, Zanoli L, Insalaco M, Valentino M, Pavlica P, Di Nicolo PP, et al. Contrast-enhanced ultrasound (CEUS) in nephrology: has the time come for its widespread use? Clin Exp Nephrol 2015;19:606-615
  13. Wang L, Mohan C. Contrast-enhanced ultrasound: a promising method for renal microvascular perfusion evaluation. J Transl Int Med 2016;4:104-108
  14. Liu B, Liang F, Gu LP, Wang CQ, Li XH, Jiang YM, et al. Renal blood perfusion in GK rats using targeted contrast enhanced ultrasonography. Asian Pac J Trop Med 2015;8:668-673
  15. Greis C. Technology overview: SonoVue (Bracco, Milan). Eur Radiol 2004;14 Suppl 8:P11-15
  16. Brabrand K, De Lange C, Emblem KE, Reinholt FP, Saugstad OD, Stokke ES, et al. Contrast-enhanced ultrasound identifies reduced overall and regional renal perfusion during global hypoxia in piglets. Invest Radiol 2014;49:540-546
  17. Chung YE, Kim KW. Contrast-enhanced ultrasonography: advance and current status in abdominal imaging. Ultrasonography 2015;34:3-18
  18. McArthur C, Baxter GM. Current and potential renal applications of contrast-enhanced ultrasound. Clin Radiol 2012;67:909-922
  19. Herget-Rosenthal S. Imaging techniques in the management of chronic kidney disease: current developments and future perspectives. Semin Nephrol 2011;31:283-290
  20. Heyman SN, Brezis M, Epstein FH, Spokes K, Silva P, Rosen S. Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int 1991;40:632-642
  21. Chen YH, Fu YC, Wu MJ. Does resveratrol play a role in decreasing the inflammation associated with contrast induced nephropathy in rat model? J Clin Med 2019;8:147
  22. Shi SR, Key ME, Kalra KL. Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem 1991;39:741-748
  23. Oh HJ, Oh H, Nam BY, You JS, Ryu DR, Kang SW, et al. The protective effect of klotho against contrast-associated acute kidney injury via the antioxidative effect. Am J Physiol Renal Physiol 2019;317:F881-F889
  24. Tsigou E, Psallida V, Demponeras C, Boutzouka E, Baltopoulos G. Role of new biomarkers: functional and structural damage. Crit Care Res Pract 2013;2013:361078
  25. Nguyen MT, Devarajan P. Biomarkers for the early detection of acute kidney injury. Pediatr Nephrol 2008;23:2151-2157
  26. Detrenis S, Meschi M, Musini S, Savazzi G. Lights and shadows on the pathogenesis of contrast-induced nephropathy: state of the art. Nephrol Dial Transplant 2005;20:1542-1550
  27. Greis C. Quantitative evaluation of microvascular blood flow by contrast-enhanced ultrasound (CEUS). Clin Hemorheol Microcirc 2011;49:137-149
  28. Ma F, Yadav GP, Cang YQ, Dang YY, Wang CQ, Liu B, et al. Contrast-enhanced ultrasonography is a valid technique for the assessment of renal microvascular perfusion dysfunction in diabetic Goto-Kakizaki rats. Nephrology (Carlton) 2013;18:750-760
  29. Grabner A, Kentrup D, Pawelski H, Muhlmeister M, Biermann C, Edemir B, et al. Renal contrast-enhanced sonography findings in a model of acute cellular allograft rejection. Am J Transplant 2016;16:1612-1619
  30. Komuro K, Seo Y, Yamamoto M, Sai S, Ishizu T, Shimazu K, et al. Assessment of renal perfusion impairment in a rat model of acute renal congestion using contrast-enhanced ultrasonography. Heart Vessels 2018;33:434-440
  31. Wentland AL, Artz NS, Fain SB, Grist TM, Djamali A, Sadowski EA. MR measures of renal perfusion, oxygen bioavailability and total renal blood flow in a porcine model: noninvasive regional assessment of renal function. Nephrol Dial Transplant 2012;27:128-135
  32. Zhou HY, Chen TW, Zhang XM. Functional magnetic resonance imaging in acute kidney injury: present status. Biomed Res Int 2016;2016:2027370
  33. Vaidya VS, Ferguson MA, Bonventre JV. Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol 2008;48:463-493
  34. Fahling M, Seeliger E, Patzak A, Persson PB. Understanding and preventing contrast-induced acute kidney injury. Nat Rev Nephrol 2017;13:169-180