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INTRODUCTION

Hepatocellular carcinoma (HCC) is the most prevalent 
primary liver cancer and a leading cause of cancer-related 
death worldwide [1,2]. The incidence rate of HCC has 
increased in recent decades [2,3]. Early detection of HCC 
allows patients to be considered for curative therapies that 
improve survival. Hence, the importance of HCC surveillance 
in high-risk patients cannot be overemphasized [4]. 
International guidelines for HCC management recommend 
imaging-based HCC surveillance for at-risk patients [5-7] 
using a bi-annual ultrasound (US) with or without serum 
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α-fetoprotein (AFP) measurements. Overall, US has shown a 
wide range of sensitivity (58%–94%) and high specificity 
(> 90%) for detecting HCC [8,9]. 

Although the use of US has been universally accepted for 
HCC surveillance, recent studies have raised concerns about 
its sensitivity for detecting HCC at early or very early stages 
[9-12]. A meta-analysis of 15 studies and 4400 patients 
reported that US sensitivity was as low as 47% for early-
stage HCC [10]. Two recent prospective studies conducted 
in a surveillance setting also reported poor US sensitivity 
for very early stage HCC (< 30%) [11,12]. Recently 
updated international guidelines for HCC allow alternative 
surveillance tools, including CT or MRI [5-7]. Considering 
the need for continuous periodic surveillance, the use of 
CT has inherent drawbacks relating to radiation hazards 
and the risks of using iodine contrast agents, despite its 
acceptable diagnostic performance [12]. Complete MRI is 
widely used for characterizing focal hepatic lesions and has 
superb performance. However, MRI as a surveillance tool 
has limitations due to the extended time and costs involved 
in the examination and interpretation of results [11]. 

To overcome these limitations, abbreviated MRI (AMRI) 
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using a few essential MRI sequences has gained acceptance. 
AMRI provides the same high performance as conventional 
MRI but saves time and reduces the cost by eliminating 
redundant sequences. Several recently published meta-
analyses support AMRI as a surveillance tool [5,13-15]. 
However, some studies included in these meta-analyses 
were conducted in a diagnostic setting with a high 
incidence of HCC. The sequences selected for AMRI, which 
can affect the performances of AMRI-based surveillance 
programs, varied across different studies. Additionally, the 
successful clinical implementation of AMRI must consider 
the reporting methods for AMRI results, the quality of the 
examinations, and a recall strategy for positive results. The 
limited availability of MRI compared to US necessitates a 
tailored strategy for using AMRI-based HCC surveillance. 
For example, prioritizing patients who would gain the 
most benefits from AMRI than from US (rather than 
applying AMRI uniformly to all target populations for HCC 
surveillance). 

This review illustrated the current landscape and future 
perspectives of AMRI by presenting the rationale and results 
of AMRI-based studies considering the study population and 
technical details. We also discussed the reporting of patient 
results and follow-up, and described the use of a risk-
stratified approach for better cost-effectiveness. 

AMRI Methods and Performances

For effective surveillance using AMRI, scanning methods 
should be simplified by including only essential image 
sequences to maximize detection ability while minimizing 
time and cost. Currently, there are three AMRI protocols: 
gadoxetic acid-enhanced MRI with hepatobiliary-phase 
(HBP) imaging (referred to as HBP-AMRI), dynamic contrast-
enhanced MRI (referred to as DCE-AMRI), and non-enhanced 
MRI (referred to as NE-AMRI) (Table 1). The high sensitivity 
and acceptable specificity of these AMRI protocols have 
been reported previously [5,13-15]. Although recent meta-
analyses have summarized the diagnostic accuracy of AMRI 
with or without contrast-enhancement (Table 2) [5,13-15], 
many of the included studies were conducted in a diagnostic 
setting in which the complete MRIs were originally 
indicated in patients with known or suspected liver lesions, 
which likely caused selection bias and overestimation of the 
sensitivity of AMRI. The results of such studies should be 
interpreted with care, considering factors that may affect 
the results, including clinical factors (e.g., clinical settings, 
HCC incidences, and underlying liver diseases) and technical 
details of the MRI sequences. In this review, we focused on 
the performance of AMRI studies conducted in a surveillance 
setting.

Table 1. Summary of AMRI Approaches
HBP-AMRI DCE-AMRI NE-AMRI

Sequences HBP, DWI, T2WI Pre- and post-contrast T1WI 
  (AP, PVP, DP/TP)

DWI, T2WI, optional T1W IP/OP 

Scan time including 
  set-up time*, min

< 15 < 17 < 14 

Strength -  Highest sensitivity among AMRI  
  approaches

-  No requirement of a recall test  
  after positive results

- Evaluation of vascular thrombus

- Most time- and cost-saving 
- No contrast agent-related issues

Weakness -  Relatively high false-positive  
  by detecting precursor lesions

- Additional recall tests needed
-  Lesion conspicuity on HBP imaging  

  influenced by liver function
-  Limited evaluation for vascular  

  thrombus
-  Potential harms related to contrast  

  agent

-  Short time window for AP imaging
-  Not evaluable ancillary imaging  

  features
-  Potential harms related to contrast  

  agent

-  Heavily dependent on DWI for  
  lesion detection which is prone  
  to artifacts

-  Limited evaluation for vascular  
  thrombus

- Additional recall tests needed

*Reported values from the literature including the set-up time (i.e., room turnover, installation, calibration, sequence preparation, and 
intravenous line placement if required). AMRI = abbreviated MRI, AP = arterial phase, DCE = dynamic contrast enhanced, DP/TP = delayed/
transitional phase, DWI = diffusion-weighted imaging, HBP = hepatobiliary-phase, IP/OP = in/opposed phase, NE = non-enhanced, PVP = 
portal venous phase, T1W = T1-weighted, T2WI = T2-weighted imaging
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HBP-AMRI

Details of Sequences
HBP-AMRI using gadoxetic acid aims to maintain the 

highly sensitive nature of HBP imaging for lesion detection 
while reducing the examination time by omitting dynamic 
contrast-enhanced sequences for lesion characterization. 
The examination workflow is simplified and quickened by 
injecting gadoxetic acid while the patient is in the waiting 
area rather than the MRI unit. The imaging sequences of 
HBP-AMRI include HBP imaging, diffusion-weighted imaging 
(DWI), and T2-weighted image (T2WI). The reported image 
acquisition time of HBP-AMRI is less than 15 minutes 
including the set-up time (i.e., room turnover, installation, 
calibration, sequence preparation, and intravenous line 
placement if required) [16-18]. With the evolving imaging 
techniques and the application of deep learning, the 
examination time may become even shorter soon.

HBP imaging is typically acquired 15–20 minutes after the 
gadoxetic acid injection. It uses the most sensitive imaging 
sequence to detect HCC with high liver-to-lesion contrast 
[19,20]. However, it is limited in lesion characterization 
as HBP hypointensity itself is not specific for HCC. For 
example, HBP hypointensity is also found in other lesions, 
including benign lesions such as hepatic hemangiomas and 
premalignant lesions such as dysplastic nodules [21-23]. 
Vessels also show hypointensity on HBP, which can cause 
a perception error and hinder the detection of true focal 
hepatic lesions. 

DWI is known as a highly sensitive sequence for 
detecting HCC and other hepatic malignancy based on 
the high cellularity of the lesion [24-28]. Hence, DWI 
may be considered in addition to HBP-AMRI to enhance 
sensitivity, particularly for small hepatic lesions adjacent 
to vessels. The sensitivity of HBP-AMRI can be maximized 
by combining HBP imaging and DWI [17]. In previous 
studies, MRI for HCC surveillance mostly utilized free-
breathing DWI with two to three b-values ranging from 0 

to 1000 s/mm2 (Table 3). However, the optimal number 
and range of b-values for surveillance have not yet been 
fully determined. The acquisition time of DWI in liver MRI 
is reported to be 3–6 minutes with the free-breathing 
method and 5–6 minutes with the respiratory triggering 
method [29]. The simultaneous multi-slice (SMS) technique 
is a recently introduced option for accelerating the image 
acquisition of DWI [30]. SMS-DWI has shown acceptable 
image quality with a shorter acquisition time than 
conventional DWI [31,32].

T2WI is essential, not only to detect lesions, but also 
to exclude common benign lesions, such as hemangiomas 
or cysts that mimic HCC on DWI or HBP imaging. By 
excluding these typical benign lesions with bright T2 signal 
intensity, the specificity for HCC detection is improved. 
HCC, in contrast, shows mild to moderate- high T2 signal 
in most of the cases. In HCC surveillance, a heavily T2WI 
sequence is preferred to a moderately T2WI for HBP-
AMRI (Table 3). A heavily T2WI sequence is preferable for 
discriminating cysts and hemangiomas from solid tumors 
than a moderately T2WI sequence [33-35]. As HBP and DWI 
are both important for lesion detection using HBP-AMRI, a 
heavily T2WI sequence may be a better triage tool. The T2 
signal intensity of hemangioma in AMRI may be affected by 
intratumoral retention of gadoxetic acid [36,37]. However, 
since all the images can be acquired within 15–20 minutes 
following contrast injection, the residual gadolinium 
content within the hemangioma would be minimal. Thus, 
the T2 shortening effect of gadolinium may be negligible. 
According to previous studies, there were no significant 
changes in the conspicuity and signal-to-noise ratio of 
hemangioma before and after gadoxetic acid injection (after 
the transitional phase) in both heavily and moderately T2WI 
sequences [38,39].

Deep learning techniques can shorten the image 
acquisition time and enhance the image quality of 
both T2WI and DWI, which traditionally demanded long 
acquisition times [40-44]. The advances in image processing 

Table 2. Summary of Meta-Analyses on the Diagnostic Performance of AMRI for Hepatocellular Carcinoma Detection

Study Year
Total Number 

of AMRI 
Studies

Number of Studies 
Performed 

in a Diagnostic Setting

Number of Studies 
Performed 

in a Surveillance Setting

Pooled 
Sensitivity (%)* 

Pooled 
Specificity (%)*

Gupta et al. [13] 2021 15   7 8 86 (84–88) 94 (91–96)
Chan et al. [14] 2021 22 18 4 86.8 (83.9–89.4) 90.3 (87.3–92.7)
Kim et al. [5] 2021 10   3 7 86 (80–90) 96 (93–98)
Kim et al. [15] 2021   4   1 3 87 (80–94) 94 (90–98)

*Numbers in parentheses are 95% confidence intervals. AMRI = abbreviated MRI
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through deep learning are expected to further enhance the 
time efficiency of AMRI programs. 

T1-weighted dual-echo imaging enables the assessment 
of intralesional fat, an ancillary feature favoring HCC, 
particularly according to the Liver Imaging-Reporting and 
Data System (LI-RADS) [45]. T1-weighted dual-echo imaging 
can be acquired in a single breath-hold using most current 
MRI systems. However, no study regarding the effect of 
gadolinium in T1-weighted dual-echo imaging in HBP-AMRI 
has been conducted in a surveillance setting. Two studies 
conducted in diagnostic settings [46,47] evaluated HBP-
AMRI, including T1-weighted dual-echo imaging. However, 
in both studies, HBP-AMRI scans were retrospectively 
simulated from the complete gadoxetic acid-enhanced MRI 
scans and thus did not reflect contrast effects on dual-echo 
imaging. Theoretically, owing to the paramagnetic effect of 
gadolinium, its presence may cause a signal loss in chemical 
shift imaging. According to previous studies that evaluated 
the influence of gadoxetic acid on fat quantification 
using liver MRI, fat fraction obtained 15–20 minutes after 
gadoxetic acid injection was smaller than that calculated on 
pre-contrast imaging [48-50]. The effects of gadoxetic acid 
on dual-echo imaging and its utility in HBP-AMRI should be 
further elucidated in future studies.

Performance
To date, five studies [16,17,51-53] have assessed the 

performance of HBP-AMRI in a surveillance setting for at-
risk patients with no history of HCC (Table 3). Four of the 
studies included prospectively recruited patient cohorts 
[16,51-53]. In one study, HBP-AMRI scans were acquired 
and interpreted prospectively [16], while in the other four 

studies, HBP-AMRI scans were simulated by extracting 
only the required sequences from the previously acquired 
complete contrast-enhanced MRI scans and interpreted 
retrospectively. In studies conducted in a surveillance 
setting, the reported per-patient sensitivity ranged from 
80.8% to 92.0%, and the specificity ranged from 91.0% to 
95.6%. According to a recent meta-analysis by Gupta et al. 
[13], the pooled sensitivity and specificity of six studies 
on HBP-AMRI [16,17,46,51,52,54] was 86% and 94%, 
respectively. Although no prospective study has yet been 
published, there is an ongoing clinical trial to compare 
the clinical feasibility of HBP-AMRI versus US in Korea 
(NCT03731923).

Reporting
The assessment and recall criteria of HBP-AMRI across 

reported studies, including the number of categories 
and scoring systems, varied [16,17,51-53]. However, the 
studies commonly regarded the lesion size ≥ 10 mm, HBP 
hypointensity, mild to moderate T2 hyperintensity, and/or 
restricted diffusion as suspicious features requiring further 
evaluation for HCC (Fig. 1).

Although there have been no guidelines on how to report 
AMRI, a standardized report for effective and consistent 
recommendations to referring clinicians is preferable. 
Structured reporting of HBP-AMRI for HCC surveillance could 
adapt that of the US LI-RADS, which was also developed for 
a surveillance setting [18,55]. The assessment of each HBP-
AMRI study can be reported as “negative”, “subthreshold”, 
or “positive” for suspected observations. A study with 
the following observation(s): lesions ≥ 10 mm, that are 
not definitely benign or a thrombus in a vein, should 

Fig. 1. Positive HBP-abbreviated MRI examination.
A-C. In a 58-year-old male with hepatitis B-associated liver cirrhosis, a HBP image (A) demonstrates a 1.2-cm hypointense observation in liver 
segment VIII (arrow). This observation shows restricted diffusion on diffusion-weighted imaging (B, b-value = 500 s/mm2, arrow) and mild high 
signal intensity on heavily T2WI (C, arrow). The patient underwent biopsy, and this observation was pathologically confirmed as a very early 
stage hepatocellular carcinoma. Note that there is another tiny hypointense observation anteriorly to the 1.2-cm observation on the HBP image 
(A, arrowhead), which can be easily regarded as a negative observation by its markedly high signal intensity on T2WI (C, arrowhead). HBP = 
hepatobiliary-phase, T2WI = T2-weighted imaging

A B C
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be regarded as “positive” and recall tests recommended. 
Given the repetitive nature of surveillance, the interval 
between observation(s) prior to the HBP-AMRI should also 
be considered. Table 4 shows the suggested standardized 
reporting and recall strategy for liver observations in each 
AMRI protocol.

The image quality of HBP images should also be reported, 
as the image quality affects the lesion conspicuity [56,57]. 
Similar to that of the US LI-RADS [55], the image quality 
of the HBP-AMRI could be categorized according to the 
presence and severity of limitations, and the likeliness of 
reduced sensitivity to detect liver observations. For HBP 

images, the relative signal intensity of the liver compared 
to that of the vessels, the heterogeneity of liver texture, 
and the presence of image artifact should be considered 
(Fig. 2) [18]. The suggested image quality classification for 
each AMRI protocol is summarized in Table 5. 

Recall Tests
Suggested algorithms for recall and management of 

the detected liver observations of each AMRI protocol 
are shown in Figure 3. Recall tests are required if a 
“positive” observation is detected on HBP-AMRI for further 
characterization. As vascular profiles of lesions essential 

Table 4. Suggested Standardized Reporting and Recall Strategies for Liver Observations Found on Each AMRI Protocol

Category
HBP-AMRI DCE-AMRI NE-AMRI

Definition Recall Strategy Definition Recall Strategy Definition Recall Strategy
Negative - No observation

-  Only definitely  
  benign  
  observation(s)*

-  Return to routine  
  surveillance

-  No  
  observation

- LR-1 
- LR-2 

-  Return to routine  
  surveillance

- No observation
-  Only definitely  

  benign  
  observation(s)*

-  Return to routine  
  surveillance

Subthreshold -  Observation(s)  
  < 10 mm, not  
  definitely benign†

-  Previous positive  
  observation(s)  
  confirmed as false  
  positive

-  Short-term  
  follow-up 

- LR-3 -  Short-term  
  follow-up 

-  Observation(s)  
  < 10 mm, not  
  definitely benign†

-  Previous positive  
  observation(s)  
  confirmed as false  
  positive

-  Short-term  
  follow-up 

Positive -  Observation(s)  
  ≥ 10 mm, not  
  definitely benign†

-  Changes in imaging  
  characteristics‡ 
  or threshold growth§ 
  of previous 
  subthreshold  
  observation(s)

- Thrombus in a vein

-  Immediate  
  further  
  evaluation  
  with diagnostic  
  test (dynamic  
  CT/MRIǁ)

- LR-5 -  Confirmatory  
  diagnosis  
  of HCC without  
  additional  
  recall tests

-  Observation(s)  
  ≥ 10 mm, not  
  definitely benign†

-  Changes in imaging  
  characteristics‡  
  or threshold growth§  
  of previously  
  subthreshold  
  observation(s)

- Thrombus in a vein

-  Immediate  
  further  
  evaluation  
  with diagnostic  
  imaging  
  (dynamic CT/ 
  MRI¶)

- LR-4 -  Second-look MRI  
  (NE-AMRI  
  or HBP-AMRI)  
  or

-  Multidisciplinary 
  decision for  
  individualized  
  workup 

- LR-TIV
- LR-M

-  Multidisciplinary  
  decision for  
  individualized  
  workup

*Marked T2 hyperintensity suggesting hemangioma or cyst, †Diffusion restriction or mild to moderate T2 hyperintensity or HBP 
hypointensity, ‡Any new appearance of not-definitely-benign characteristics, §Size increase by ≥ 50% in ≤ 6 months, ǁFor MRI, 
extracellular contrast material is preferred over gadoxetic acid, ¶Diffusion-weighted imaging and T2-weighted imaging can be omitted 
and only pre- and post-contrast enhanced T1-weighted sequences need to be added. AMRI = abbreviated MRI, DCE = dynamic contrast 
enhanced, HBP = hepatobiliary-phase, HCC = hepatocellular carcinoma, NE = non-enhanced
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for the diagnosis of HCC are not evaluable with HBP-
AMRI alone, confirmatory imaging tests should contain 
dynamic contrast-enhancement phases in which arterial 
phase hyperenhancement (APHE) and washout can be 
demonstrated. Both dynamic contrast-enhanced CT and 
MRI can be used as confirmatory tests. Park et al. [47] 
suggested that dynamic CT can be used as a sequential 
examination for liver observations detected on HBP-AMRI. 
When MRI is used, imaging sequences in the HBP-AMRI that 
have already been evaluated are not necessarily repeated. 
Instead, only dynamic contrast-enhanced sequences are 
included. Regarding the contrast agent of confirmatory MRI, 
extracellular contrast media (ECCM) is preferred to gadoxetic 
acid, as arterial phase images of gadoxetic acid-enhanced 

MRI are often unsatisfactory, owing to the weaker arterial 
enhancement [58,59] and respiratory motion artifacts, with 
a reported incidence of 4.8% to 26.7% [60-62].

Issues
There are several issues with HBP-AMRI-based HCC 

surveillance. First, false-positive findings on HBP imaging 
can be relatively high. HBP hypointensity can be seen 
in “any” focal hepatic lesion with reduced expression of 
OATP transporter (including HCC and non-HCC lesions) 
[21]. Discriminating benignity and malignancy in HBP 
hypointense lesions is not always possible with only DWI 
and T2WI in the absence of dynamic information. For a 
surveillance test, high sensitivity is important. On the 

Visualization score A
Unlikely to obscure

observation < 10 mm

Visualization score B
Likely to reduce sensitivity for

observation < 10 mm

Visualization score C
Likely to reduce sensitivity for

observation ≥ 10 mm

Fig. 2. Image quality categorization of HBP-AMRI. The image quality of HBP-AMRI could be categorized according to the presence and 
the severity of limitations and the likeliness of reduced sensitivity to detect liver observations on HBP images. The relative signal intensity of 
the liver compared to that of the vessels, the heterogeneity of liver texture, and the presence of image artifact should be considered. AMRI = 
abbreviated MRI, HBP = hepatobiliary-phase

Table 5. Classification of Image Quality of Each Imaging Modality
HBP-AMRI DCE-AMRI NE-AMRI

Key sequence HBP imaging Arterial phase imaging Diffusion-weighted imaging
Score

A (unlikely to obscure 
  observation < 10 mm)

-  Liver signal considerably higher  
  than that of the vessels

-  Liver texture homogeneous  
  or mildly heterogeneous 

-  No or minimal motion artifact,  
  no effect on diagnostic quality

-  Proper timing of late arterial  
  phase imaging

-  No or minimal motion  
  or susceptibility artifact,  
  no effect on diagnostic quality

B (likely to reduce sensitivity 
  for observation < 10 mm)

-  Liver signal only slightly higher  
  than that of the vessels

-  Liver texture moderately  
  heterogeneous 

-  Moderate motion artifact,  
  some but not severe effect  
  on diagnostic quality

-  Moderate motion or  
  susceptibility artifact,  
  some but not severe effect  
  on diagnostic quality

C (likely to reduce sensitivity 
  for observation ≥ 10 mm)

-  Liver signal same or lower than  
  that of the vessels

-  Liver texture severely  
  heterogeneous

- Severe artifact

-  Severe or extensive motion  
  artifact, barely interpretable  
  or nondiagnostic

-  Severe or extensive motion or  
  susceptibility artifact, barely  
  interpretable or nondiagnostic

Visualization score B or C will require a brief description of the specific limitations by the radiologist. AMRI = abbreviated MRI, DCE = 
dynamic contrast enhanced, HBP = hepatobiliary-phase, NE = non-enhanced
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contrary, low specificity may lead to unnecessary referrals, 
resulting in potential psychologic and physiologic harm 
to the patient [63]. Thus, the impact of false positives 
due to a relatively low specificity should be considered 
when implementing HBP-AMRI as an HCC surveillance tool. 
Second, recall tests providing hemodynamic information 
should be mandatory in a positive case. However, this 
increases cost and time. Third, patients with poor liver 
function and consequently poor hepatic enhancement during 
HBP may hinder the detection of HCC on HBP images [56,57]. 
Fourth, tumor thrombus, found in up to 44% of patients 
with HCC, is an important factor determining the proper 
therapeutic option [64], and can be missed with HBP-AMRI 
due to the lack of dynamic contrast-enhancement sequences. 
Although the occluded vein may show restricted diffusion 
[65], sensitivity is limited and DWI alone cannot reliably 
discriminate a tumor thrombus from a bland thrombus 
[66,67]. Fifth, increasing concerns regarding the potential 
risks related to gadolinium-based MRI contrast agents, 
including nephrogenic systemic fibrosis and the retention of 
gadolinium in human tissues must be considered [68,69]. 
Given the repetitive nature of surveillance tests, potential 
risks should not be easily dismissed. 

DCE-AMRI

Details of Sequences
DCE-AMRI is composed of fat-saturated T1-weighted 

pre-contrast images and successive post-contrast phase 
images (arterial phase, portal venous phase, and delayed 
phase/transitional phase) following the administration of 

either ECCM or liver-specific contrast agent. DCE-AMRI is 
timesaving as it omits sequences other than the dynamic 
contrast-enhancement phases, such as DWI or T2WI. The 
reported approximate image acquisition time for DCE-AMRI 
is less than 17 minutes, including set-up time [17,70]. 

The major advantage of this strategy is that it can 
demonstrate the major features essential for a definite 
diagnosis of HCC [45]. If the lesion fulfills LR-5 criteria, 
an HCC diagnosis can be made with DCE-AMRI alone 
without the need for further confirmatory tests. Another 
advantage is that a vascular thrombus can be detected 
and characterized on DCE-MRI, and this is crucial for HCC 
diagnosis and management. 

Performance
Studies on the performance of DCE-AMRI are relatively 

scarce, and no previous study has evaluated the performance 
of ECCM-enhanced DCE-AMRI in a surveillance setting. Since 
2017, only two retrospective studies [70,71] have explored 
the value of ECCM-enhanced DCE-AMRI in detecting HCC in a 
diagnostic setting. Lee et al. [70] evaluated the differences 
of LI-RADS categorization between DCE-AMRI and complete 
MRI, and detected only 5% of changes in LI-RADS 
categorization. This study did not evaluate the diagnostic 
performance of DCE-AMRI. Khatri et al. [71] reported a per-
patient sensitivity of 92.1%, and specificity of 88.6% for 
DCE-AMRI conducted in a diagnostic setting. In this study, 
the HCC prevalence was 32.6%. Thus, the performance of 
DCE-AMRI using ECCM in a surveillance population should 
be further validated prospectively.

Two retrospective studies have investigated gadoxetic 

HBP-AMRI DCE-AMRI NE-AMRI

HBP DWI T2WI Unenhanced AP PVP DP DWI T2WI
Detection Detection

Report

Negative Negative NegativeSubthreshold Subthreshold SubthresholdPositive Positive Positive

Return to 
surveillance

Return to 
surveillance

Return to 
surveillance

Short-term 
follow-up

Short-term 
follow-up

Short-term 
follow-up

Diagnostic test 
(dynamic CT/MRI*)

Diagnostic test 
(dynamic CT/MRI‡)

Report

LR-5

HCC

LR-4

MDDSecond-
look

MRI† or
MDD

LR-TIV LR-M

Report

Characterization Detection & Characterization Characterization &
DetectionDetection

Fig. 3. Summary of AMRI protocols with suggested algorithms for reporting and recall strategies of the detected liver observation. 
*For MRI, extracellular contrast material may be preferred to gadoxetic acid, †NE-AMRI or HBP-AMRI, ‡DWI and T2WI can be omitted.  
AMRI = abbreviated MRI, AP = arterial phase, DCE = dynamic contrast-enhanced, DP = delayed phase, DWI = diffusion-weighted imaging, HBP = 
hepatobiliary-phase, HCC = hepatocellular carcinoma, MDD = multidisciplinary discussion, NE = non-enhanced, PVP = portal venous phase, T2WI = 
T2-weighted imaging
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acid-enhanced DCE-AMRI [17,46]. One study was conducted 
in a surveillance setting [17] using simulated DCE-AMRI, 
including T1 DCE images (washout was evaluated only on 
portal venous phase images), DWI, and T2WI, without HBP 
images (Table 3), and reported a sensitivity of 84.6% and 
a specificity of 99.8%. However, it is unclear whether the 
MRI protocol used in this study could be regarded as a “true 
abbreviated” MRI, as only the HBP sequence was omitted 
from the complete MRI protocol, and therefore, the scan 
time would be similar to a complete ECCM-enhanced MRI. 
The other retrospective study was in a diagnostic setting 
[46] and reported the performance of gadoxetic acid-
enhanced DCE-AMRI, with a sensitivity of 90.3% and a 
specificity of 100.0%. 

Reporting
As all major features and a subset of ancillary features 

can be evaluated with DCE-AMRI, LI-RADS could be adopted 
for the standardized reporting of DCE-AMRI (Fig. 4). The 

two aforementioned ECCM contrast-enhanced DCE-AMRI 
studies [70,71] also used the LI-RADS. Considering that the 
imaging features evaluable using DCE-AMRI are the same 
as those of dynamic CT, the interpretation and reporting 
of DCE-AMRI could also adopt those for dynamic CT, such 
as CT LI-RADS [45], without major modification. As such, 
LR-4, LR-5, LR-TIV, and LR-M lesions detected on DCE-
AMRI may be considered positive findings (Table 4). The 
reporting system of DCE-AMRI warrants further refinement 
and standardization. The imaging quality of arterial phase 
imaging, with considerations to artifacts or timing, should 
also be reported (Table 5). 

Recall Tests
The callback strategy or follow-up recommendations for 

observation(s) detected by DCE-AMRI has not been clearly 
investigated. DCE-AMRI can demonstrate the major features 
of HCC as defined by LI-RADS [45]. If the lesion fulfills 
the LR-5 criteria on DCE-AMRI, no further confirmatory 

Fig. 4. Positive dynamic contrast-enhanced abbreviated MRI examination.
A-D. In a 77-year-old female with liver cirrhosis who underwent extracellular contrast media-enhanced liver MRI, non-enhanced T1-weighted 
image (A) and arterial phase image (B) demonstrate a 2-cm observation demonstrating arterial phase hyperenhancement in liver segment III 
(arrows). Portal venous phase image (C) and delayed phase image (D) show washout appearance of the observation (arrows), meeting the 
criteria for LR-5. Note the enhancing capsule of the observation.

A

C

B

D
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test is required. For LR-TIV and LR-M observations found 
on DCE-AMRI, additional dynamic CT or complete MRI 
may be unnecessary because no further change of the LI-
RADS category can be made [45]. Further management for 
these lesions should be tailored through multidisciplinary 
discussion for individual patients, considering comorbidities 
or preferences (Table 4) [45,72]. For lesions of LI-
RADS category 4, further MRI tests, including sequences 
other than DCE MRI, will likely be needed. If LR-3 or 
LR-4 observations are detected on DCE-AMRI, further 
management may differ according to different treatment 
practice patterns [7,73]. In countries that prioritize 
sensitivity over specificity, a second-look HBP-AMRI or NE-
AMRI as a component of a sequential examination may be 
recommended [74]. For observations smaller than 10 mm, 
HBP MRI is a better choice as a second-look MRI [74]. 
However, if specificity is preferred to sensitivity, further 
management can follow the LI-RADS recommendation 
(Table 4, Fig. 3).

Issues
On DCE-AMRI, the acquisition of optimal arterial phase 

imaging is essential as lesion characterization primarily 
relies on the presence of APHE. Consequently, the relatively 
narrow time window of optimal arterial phase imaging may 
be a unique challenge to DCE-AMRI. Additionally, owing to 
the lack of additional sequences, such as DWI and T2WI, 
ancillary features favoring HCC or malignancy are not 
evaluable on DCE-AMRI [45]. Furthermore, similar to HBP-
AMRI, DCE-AMRI is not without gadolinium-related issues.

We are skeptical about the use of gadoxetic acid for 
DCE-AMRI. The major strength of gadoxetic acid is to 
maximize sensitivity in HBP imaging with high liver-to-
lesion contrast. Obtaining only dynamic contrast-enhanced 
sequences while omitting HBP images would decrease 
the diagnostic performance of MRI using gadoxetic acid 
[75,76]. Drawbacks in the arterial phase of gadoxetic acid-
enhanced MRI would further mitigate its performance in 
HCC detection [58-62]. 

NE-AMRI

Details of Sequences
NE-AMRI consists of DWI and T2WI, with optional T1-

weighted in/opposed imaging. NE-AMRI is the simplest 
strategy of the three AMRI options. Recent studies 
have reported that the simulated scan time of NE-AMRI 

comprising DWI and T2WI was less than 14 minutes, 
including set-up time [27]. Moreover, contrary to the 
contrast-enhanced AMRI protocols, NE-AMRI is free from 
gadolinium-related costs and concerns. 

DWI is excellent in detecting HCC [24-28]. Sutherland 
et al. [77] prospectively evaluated a DWI-only strategy for 
HCC surveillance, which showed sensitivity and specificity 
of 83% and 98%, respectively. Most previous studies 
that evaluated NE-AMRI for HCC surveillance used a free-
breathing or respiratory-triggered DWI sequence with three 
b-values, ranging from 0 to 800 s/mm2 (Table 3). The 
optimal number and range of b-values for NE-AMRI have 
not yet been determined. Unlike HBP-AMRI, in which both 
HBP imaging and DWI can sensitively detect lesions, in 
NE-AMRI, only DWI plays a major role in lesion detection. 
Therefore, care must be taken to achieve good image quality 
when designing the DWI pulse sequence.

T2WI enables lesion detection as well as characterization. 
The primary role of T2WI in HBP-AMRI is to increase 
the specificity by excluding common benign lesions 
rather than lesion detection per se. In contrast, in NE-
AMRI, the role of T2WI for lesion detection is increased 
given the lack of back-up from HBP images. Therefore, 
moderately T2WI sequences seem to be more suitable than 
heavily T2WI sequences for NE-AMRI surveillance, as the 
lesion conspicuity and signal-to-noise ratio are better in 
moderately T2WI sequences [78,79], although there is a 
paucity of published results at present (Table 3). The scan 
and set-up time of NE-AMRI is shorter than in other AMRI 
strategies. Together with the evolving image techniques, 
including deep learning, it may be possible to obtain 
both heavily and moderately T2WI sequences without a 
significant increase in scan time. Further investigations 
are required to design and validate the optimal T2 pulse 
sequence for NE-AMRI. 

T1-weighted dual-echo imaging can be obtained in a 
single breath-hold using most current MRI systems, and 
is acceptable to be included in the NE-AMRI protocol 
considering time. According to the LI-RADS [45], T1-
weighted dual-echo imaging enables the assessment of 
intralesional fat, an ancillary feature favoring HCC in 
particular. However, not all fat-containing lesions are HCCs. 
Dysplastic nodules can also contain fat [80]. 

Performance
NE-AMRI has also shown acceptable performance for 

HCC surveillance. Recently, one clinical trial (MAGNUS-
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HCC, NCT02551250) evaluated the diagnostic performance 
of the annual NE-AMRI (T2WI, DWI, and T1-weighted in/
opposed images) for HCC surveillance in patients with liver 
cirrhosis compared to that of biannual US [81]. In this 
study, the per-patient sensitivity of NE-AMRI was 71.0%, 
and the positive predictive value (PPV) was 61.1%, which 
are both higher than those of US (sensitivity, 45.2%; PPV, 
33.3%). Additionally, the false referral rate of NE-AMRI was 
2.7%. Another clinical trial evaluating NE-AMRI for HCC 
surveillance in patients with liver cirrhosis (MIRACLE-HCC, 
NCT02514434) is ongoing. 

Four retrospective studies [17,27,77,82] have evaluated 
the performance of NE-AMRI in a surveillance setting, 
and the sensitivity and specificity ranged from 61.5% 
to 100% and 95.5% to 100%, respectively. One study 
[27] comparing NE-AMRI (T2WI and DWI) and US in a 
surveillance setting showed a significantly higher per-exam 
sensitivity (79.1% vs. 27.9%) and specificity (97.9% vs. 
94.5%) for NE-AMRI than US. 

Reporting
NE-AMRI for HCC surveillance can be interpreted as 

“negative”, “subthreshold”, or “positive” for suspected 
observations. “Positive” is defined by the presence of an 
observed lesion ≥ 10 mm, showing either diffusion restriction 
or mild-to-moderate T2 hyperintensity (Table 4, Fig. 5) 
[17,27,82]. The image quality of DWI should be reported with 
consideration to artifacts (Table 5). 

Recall Tests
Confirmatory tests are required for all “positive” NE-AMRI 

studies. Either dynamic CT or complete MRI (using either 
gadoxetic acid or ECCM) can be used for recall testing. When 
MRI is used, DWI and T2WI are not necessarily repeated, 
and only pre- and post-contrast enhanced T1-weighted 
sequences need to be added (Table 4). 

Issues
First, the relatively low sensitivity of NE-AMRI should be 

noted. Whereas the sensitivity of HBP-AMRI ranges from 
80.8% to 92.0%, the sensitivity of NE-AMRI ranges from 
61.5% to 100%. In Vietti Violi et al. [17], which reported 
the diagnostic performance of both simulated HBP-AMRI 
(HBP imaging, DWI, and T2WI) and NE-AMRI (DWI and 
T2WI), the sensitivity of HBP-AMRI was 80.8%, while that 
of NE-AMRI was 61.5%. suggesting the incremental value of 
HBP imaging on AMRI for increasing sensitivity. However, 
in the same study, the specificity of NE-AMRI (95.5%) was 
slightly higher than that of HBP-AMRI (94.9%), which 
is consistent with the overall trend of the two strategies 
(specificity of HBP-AMRI ranged from 91.0% to 95.6%, 
while that of NE-AMRI was higher, ranging from 95.5% to 
100.0%). Second, NE-AMRI greatly depends on DWI for 
lesion detection, which is vulnerable to artifacts such as 
susceptibility artifacts. Therefore, the presence of artifacts 
in DWI would reduce its sensitivity to detect liver lesions 
and this should be clearly reported when reporting image 
quality so that a second-look exam or changing to another 
surveillance method may be considered. Third, a recall 
test is always required when the NE-AMRI is positive. 
Fourth, like in HBP-AMRI, NE-AMRI has limited sensitivity 
to detect and characterize tumor thrombus. Regarding 

Fig. 5. Positive non-enhanced abbreviated MRI examination.
A, B. A 65-year-old male with hepatitis B-associated cirrhosis. Diffusion-weighted imaging image (A, b-value = 500 s/mm2) and T2-weighted 
imaging (B) both demonstrate a 1.5-cm hyperintense nodule in the right hepatic lobe (arrows). This patient underwent partial hepatectomy after 
3 months, and this observation was confirmed as a very early stage hepatocellular carcinoma.

A B
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the gadolinium-related issues, the relative benefit and 
harm of each strategy should be explored through a cost-
effectiveness study.

Patient Selection for AMRI Surveillance 
Programs

Given the relatively limited availability of MRI and the 
higher costs compared to US, AMRI-based HCC surveillance 
should be tailored toward those who can benefit most 
from AMRI, rather than applying it uniformly to all target 
populations for HCC surveillance. Considering the initial 
rationale, AMRI-based HCC surveillance may be beneficial 
for populations whose US examinations are likely to 
generate inadequate quality. The sonic window and quality 
of US are particularly impaired in patients with liver 
cirrhosis, a major risk factor for HCC, due to the progressed 
distortion and heterogeneity of the hepatic parenchyma. 
Indeed, 20%–30% of US examinations in patients with liver 
cirrhosis are classified as inadequate for HCC surveillance 
[83,84]. The sensitivity of US is also lowered in patients 
with obesity or steatohepatitis, which are increasingly 
common in surveillance populations [84,85], as they result 
in limited sonic beam penetration. According to a recent 
study, the sensitivity of US was only 21% in patients with 
body mass index (BMI) ≥ 30 kg/m2 compared to 77% in 
those with BMI < 30 kg/m2 [86]. Accordingly, patients 
with advanced liver cirrhosis, obesity, or non-alcoholic 
steatohepatitis (NASH) are likely to benefit more from AMRI 
than US. Previous US examinations may help to predict 
the quality of subsequent US examinations. According to 
a recent study that evaluated three consecutive rounds of 
HCC surveillance, the image quality of US in the first round 
remained unchanged in the follow-up rounds in the vast 
majority of cases (83.3%–92.2%) [53].

Patients at high risk of developing HCC would likely 
benefit from AMRI-based surveillance. Most previous 
studies of AMRI-based HCC surveillance included patients 
at high risk for HCC such as liver cirrhosis, due to the 
higher incidence of HCC in these patients than the average 
surveillance populations [87,88]. In three Korean studies 
that evaluated the diagnostic performance of AMRI in 
prospective surveillance cohorts [27,53,81] using a 
prognostic model to assess the risk of developing HCC [89], 
only patients with liver cirrhosis and with an estimated 
annual HCC risk exceeding 5% were included. The resultant 
HCC prevalence of the three studies ranged from 11.3% 

to 19.3%. There is increasing evidence to support risk-
stratified HCC surveillance strategies, i.e., to allocate 
more sensitive approaches to patients with higher risks 
[11,12,27,81,90,91]. 

Patient Preference and Adherence Issues

For the successful application of AMRI-based surveillance, 
both the diagnostic performance of AMRI and patients’ 
adherence to surveillance programs are paramount. Despite 
the proven efficacy of surveillance related to survival, 
many patients at risk of HCC do not undergo consistent 
surveillance [92-95]. According to a meta-analysis, the 
pooled adherence rate to HCC surveillance was only 
approximately 52% (95% confidence interval, 38%–66%) 
[95]. 

Notably, patient preference and values play an 
important role in adherence to surveillance programs [96]. 
According to a recent study by Woolen et al. [97], which 
surveyed patients at risk of HCC to elicit preferences for 
characteristics of HCC surveillance methods, participants 
strongly preferred AMRI (29.0%), complete MRI (23.3%), or 
novel blood-based biomarker testing (20.9%) to US alone 
(3.4%) or with AFP (8.8%). In the era of multiple HCC 
surveillance tools, patients must be provided with relevant 
and updated information, as well as the opportunity to 
align their preferences to surveillance tools. This, in turn, 
would facilitate higher patient adherence to surveillance 
programs, and ultimately, improve survival.

Cost-Effectiveness and Payment Issue

A cornerstone factor to consider in the successful 
application of AMRI for HCC surveillance should be the 
patient’s outcome over costs [98]. The key factors in 
determining the cost-effectiveness of cancer screening 
include test costs, diagnostic performances of the tests, 
the incidence of cancer, and treatment-enhanced survival 
[99-101]. There is increasing evidence to support the cost-
effectiveness of risk-stratified HCC surveillance strategies 
using MRIs. According to Goossens et al. [90], applying 
AMRI to high- and intermediate-risk patients without 
screening low-risk patients had the lowest incremental cost-
effective ratio of $2100 per quality-adjusted life-years. Kim 
et al. [91] opined that gadoxetic acid-enhanced MRI is a 
cost-effective surveillance option in high-risk patients with 
an annual incidence rate of 1.81% or higher. Contrastingly, 
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in patients at a low or intermediate risk of HCC, US is the 
preferred strategy for HCC surveillance. Defining indications 
and target populations of AMRI-based HCC surveillance 
should be based on the cost-effectiveness analysis, which 
warrants further studies. With evolving MRI techniques 
including deep learning techniques, the time required for 
AMRI examination will decrease in the near future. This will 
further improve the cost-effectiveness of AMRI surveillance.

The payment for AMRI for HCC surveillance is an 
unresolved issue. Although the studies mentioned earlier 
have proposed a potential cost-effectiveness model for 
AMRI, refinement and standardization of the AMRI protocols 
across sites and the validation of its cost-effectiveness 
by multicenter clinical trials would be needed to secure 
reimbursement by health insurance for AMRI for HCC 
surveillance.

CONCLUSION

The introduction of AMRI has changed the landscape of 
HCC surveillance. AMRI reduces redundant MRI sequences 
by obtaining only a few essential sequences for detecting 
HCC such as HBP imaging, DWI, and T2WI. The three 
currently proposed AMRI protocols are HBP-AMRI, DCE-
AMRI, and NE-AMRI. Each protocol has its unique benefits 
and drawbacks. All three AMRI techniques have shown 
excellent performance for detecting HCC, although evidence 
from prospective studies conducted in a true surveillance 
setting remains insufficient. Refining MRI sequences to 
achieve acceptable performance within a minimal timeframe 
is a prerequisite of an effective AMRI surveillance program. 
Updated MRI techniques such as SMS and deep learning 
techniques, are expected to propel the speed of AMRI 
examination and improve its time efficiency. AMRI should 
be reported in a standardized manner to guide recall tests 
explicitly and consistently. For this purpose, a modification 
of the US or CT LI-RADS seems to be a reasonable approach. 
AMRI-based HCC surveillance should be tailored toward 
those in whom US quality is inadequate, such as patients 
with severe liver cirrhosis, obesity, and NASH; those who 
underwent precedent US exams with unsatisfactory quality; 
and those who carry high rather than low or moderate 
risk of HCC. Patients generally prefer AMRI over other 
surveillance options. The patient’s preference may lead to 
better adherence to AMRI programs.
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