• 제목/요약/키워드: Contradiction Solving

검색결과 43건 처리시간 0.029초

트리즈의 물리적 모순에 대한 모순해결 나비모형의 모순관계와 해결차원 분류 (Classification of Contradiction Relations and their Solving Dimensions based on the Butterfly Model for Contradiction Solving for Physical Contradiction of TRIZ)

  • 현정석;박찬정
    • 지식경영연구
    • /
    • 제15권4호
    • /
    • pp.15-34
    • /
    • 2014
  • Creative problem solving has become an important issue in many fields. Among problems, dilemma need creative solutions. New creative and innovative problem solving strategies are required to handle the contradiction relations of the dilemma problems because most creative and innovative cases solved contradictions inherent in the dilemmas. Among various kinds of problem solving theories, TRIZ provides the concept of physical contradiction as a common problem solving principle in inventions and patents. In TRIZ, 4 separation principles solve the physical contradictions of given problems. The 4 separation principles are separation in time, separation in space, separation within a whole and its parts, and separation upon conditions. Despite this attention, an accurate definitions of the separation principles of TRIZ is missing from the literature. Thus, there have been several different interpretations about the separation principles of TRIZ. The different interpretations make problems more ambiguous to solve when the problem solvers apply the 4 separation principles. This research aims to fill the gap in several ways. First, this paper classify the types of contradiction relations and the contradiction solving dimensions based on the Butterfly model for contradiction solving. Second, this paper compares and analyzes each contradiction relation type with the Butterfly diagram. The contributions of this paper lies in reducing the problem space by recognizing the structures and the types of contradiction problems exactly.

트리즈의 모순분석을 활용한 창의적 문제해결 실습과정 (Creative Problem Solving Process using TRIZ Contradiction Analysis)

  • 김태운
    • 공학교육연구
    • /
    • 제18권3호
    • /
    • pp.39-45
    • /
    • 2015
  • Many methods have been suggested for a creative problem solving approach. TRIZ approach is ranked top in its practical application because it is originated from the real patent analysis. This approach is assumed to be generic which can be applied to any types of problems regardless of problem type and its domain. The objective of this study is to propose a creative problem solving approach using TRIZ's contradiction analysis, then introduce a case study of applying this approach to a creative design coursework. Main topic covers a creative problem solving approach, a problem definition using TRIZ contradiction analysis, finding invention principles, and problem solving from the generic approach. For the course project, Roborobo tool is adopted to implement the design concept. This coursework helps students finding a general problem solving approach, and applying a generic solution for their specific problem domain.

Butterfly Chatbot: Finding a Concrete Solution Strategy to Solve Contradiction Problems

  • Hyun, Jung Suk;Park, Chan Jung
    • 한국정보기술학회 영문논문지
    • /
    • 제9권1호
    • /
    • pp.77-87
    • /
    • 2019
  • The Butterfly model, which aims to solve contradiction problems, defines the type of contradiction for given problems and finds the problem-solving objectives and their strategies. Unlike the ARIZ algorithm in TRIZ, the Butterfly model is based on logical proposition, which helps to reduce trial and errors and quickly narrows the problem space for solutions. However, it is hard for problem solvers to define the right propositional relations in the previous Butterfly algorithm. In this research, we propose a contradiction solving algorithm which determines the right problem-solving strategy just with yes or no simple questions. Also, we implement the Butterfly Chatbot based on the proposed algorithm that provides visual and auditory information at the same time and help people solve the contradiction problems. The Butterfly Chatbot can solve contradictions effectively in a short period of time by eliminating arbitrary alternative choices and reducing the problem space.

분할-결합 원리와 상태모형에 대한 학습이 모순문제 해결과 성장 마인드세트에 미치는 영향 (Learning Effects of Divide-and-Combine Principles and State Models on Contradiction Problem Solving and Growth Mindset)

  • 현정석;박찬정
    • 지식경영연구
    • /
    • 제14권4호
    • /
    • pp.19-46
    • /
    • 2013
  • This paper aims to show the learning process and the educational effects of Divide-and-Combine principles and State Models, which are included in the Butterfly Model for creative problem solving. In our State Models, there are Time State Model, Space State Model, and Whole-Parts State Model. We have taught middle school students (for 18 hours), high school students (for 24 hours), and undergraduate students (for 1 semester) about our proposed Models when they solved contradiction problems. Also, we have made the students learn our contradiction resolution algorithms by themselves based on team-based discussion. By learning and by using our Models, the students had the higher level of expertise in contradiction problems and had the growth mindset that made them have confidence in themselves and kept them challenging themselves about problems. Also, learning and solving with our Models improved the students' growth mindset as well as their problem-solving ability.

  • PDF

모순 문제 해결을 위한 의사결정트리 기반 나비 알고리즘의 개발과 적용 (Development and Application of the Butterfly Algorithm Based on Decision Making Tree for Contradiction Problem Solving)

  • 현정석;고예준;김융결;전승재;박찬정
    • 컴퓨터교육학회논문지
    • /
    • 제22권1호
    • /
    • pp.87-98
    • /
    • 2019
  • 모순에 대한 일반적인 생각은 모순을 해결 가능성이 전혀 없는 공집합이나 논리적으로 틀린 것이다. 두 가지 대안 중에서 어느 쪽도 바람직하지 못한 결과를 초래하는 딜레마는 그 안에 숨어 있는 모순을 해결해야 하므로 해결이 어렵다. 하지만 이런 특성으로 인해 역설적으로 모순 해결은 혁신적이고 창의적인 문제 해결로 간주 되어왔다. 문제의 해법을 모순 해결의 관점에서 분석하는 트리즈(TRIZ)는 그동안 컴퓨터보다는 인간의 관점에서 문제 해결 방법으로 사용되었다. 트리즈처럼 모순 해결 중심으로 문제를 분석하는 나비 모형은 문제 해결의 자동화 관점에서 기호 논리학을 이용하여 모순 문제의 유형을 분석하였다. 모순문제유형별 구체적 해결전략을 적용하기 위해 본 연구에서는 의사결정트리 기반의 나비 알고리즘을 설계하였다. 본 연구는 파이선 tkInter를 바탕으로 주어진 모순 문제의 구체적 해결전략을 찾아 사용자들에게 제시하는 시각화 도구를 개발하였다. 개발한 도구를 검증하기 위하여 중학교 3학년 학생들이 나비 알고리즘을 학습한 후, 나무지지대의 모순 문제를 분석하도록 하였다. 학생들이 새로운 해결책을 찾아 발명대회에 참가하여 대상을 받았다. 본 연구에서 개발한 의사결정트리 기반 나비 알고리즘은 문제 해결 초기에 문제의 해결공간을 체계적으로 줄여주어 시행착오 없이 모순 문제를 해결하는데 도움을 줄 수 있다.

TRIZ 인과관계 모순트리와 통합원리를 이용한 물리적 모순의 창의적 해결방안의 고찰 및 적용방안 (Review and Application of Creative Problem-Solving Processes for Technical and Physical Contradictions Using Cause-And-Effect Contradiction Tree and Integrated Principles of TRIZ)

  • 최성운
    • 대한안전경영과학회지
    • /
    • 제17권2호
    • /
    • pp.215-228
    • /
    • 2015
  • A creative innovation and an innovative problem-solving of industrial companies can be achieved by overcoming the challenges of technical and physical contradictions. The approaches to address conflicting and paradoxical problems, such as technical and physical contradictions have a crucial role in advancing the quality assessment for manufacturer and service provider. The term, technical contradiction, depicts the state that improvement of one ends of IFR (Ideal Final Result) leads to unfavorable condition of the other ends, and results in conflicting problem. Another type of contradictions that's discussed in this study is a physical contradiction which is due to two mutually opposing states of the means of ends, and gives paradoxical situation. By integrating the means-ends chain perspectives, the physical contradiction that is a specifically root-causes, "means", can be initially addressed to resolve the downstream problem of technical contradiction which represents a general and abstract goals, "ends". This research suggests IFR resolution processes to handle both physical contradiction of means and technical contradiction of ends by employing causal relationship with IFR, effects and causes. In summary, the study represents three major processes that resolve such contradictions are demonstrated as follows: 1) Derivation of causal and hierarchical relationship among IFR, ends and means by considering CAED (Cause-And-Effect Diagram) and LT (Logic Tree). 2) Identification of causal relationship between physical contradiction and technical contradiction by using TPCT (TRIZ Physical Contradiction Tree) and TCD (Technical Contradiction Diagram). 3) Application of integrated TRIZ principles by classifying 40 inventive principles into 4 general conditions of the separation principle of mutually opposite states in space, in time, based on conditions, and between the parts and the whole. In order to validate the proof of proposed IFR resolution processes, the analysis of the TRIZ case studies from National Quality Circle Contest in the years, 2011 to 2014 have been proposed. The suggested guidelines that are built based on TRIZ principles can uniquely enhance the process of quality innovation and assessment for quality practitioners.

창의적 문제 해결 기법의 물리적 모순 해결에 의한, 초절수형 양변기 시스템의 설계 (Design of Super Water-Saving Toilet System by Solving Physical Contradiction in Theory of Inventive Problem Solving (TRIZ))

  • 이홍석;이경원
    • 한국CDE학회논문집
    • /
    • 제6권3호
    • /
    • pp.193-197
    • /
    • 2001
  • This paper describes the design process of super water-saving toilet bowl system by the theory of inventive problem solving (TRIZ). The physical contradiction in TRIZ is defined far saving water in toilet bowl system with preventing the bad smell from septic tank. The super water-saving toilet bowl system is obtained by using the separation principle in time far resolving the physical contradiction. The real system is made using CAD tools. The consumption of water in the system implemented, is estimated about 3 ιcomparing with 13 ι of that in conventional toilet bowl system.

  • PDF

물류개선을 위한 트리즈 방법론 연구 (A Study on Applying TRIZ to Logistics improvement)

  • 정수환;백성준;유연우
    • 디지털융복합연구
    • /
    • 제12권8호
    • /
    • pp.77-84
    • /
    • 2014
  • TRIZ는 원래 러시아인인 알트슐러에 의해 개발되어 기술 분야의 문제 해결에 활용 되어 왔지만, 최근에는 Darrell Mann에 의해 비 기술 영역에도 적용이 되기 시작하였다. 국내에는 1995년 LG전자에서 최초로 도입하여 현재는 삼성, 포스코 등 많은 기업들이 문제 해결도구로 사용하고 있다. TRIZ 문제 해결 방법은 문제를 정의하고, RCA(Root Cause Analysis)를 통해 근본원인을 찾아내어 기술적 모순과 물리적 모순을 정의 하고 있다. TRIZ는 모순을 극복하는 것이 문제를 해결하는 것이다. 본 연구는 문제 해결 방법인 TRIZ 원리를 이용하여 비기술 분야인 물류 영역의 개선에 적용하고자 하였다. 실제 "L" 기업의 물류 재작업이라는 물류 운영 개선을 하기 위해 TRIZ 방법론 중 RCA(Root Cause Analysis)분석, 모순 정의, 40가지 발명원리를 사용하여 문제 해결을 위한 아이디어 도출 및 적용 하였다. 본 연구는 TRIZ를 비기술 분야에 활용하고자 하는 향후 연구자들에게 도움이 되고자 하였다.

제품개발 공정신뢰성 확보를 위한 TRIZ 기반 창조적 문제해결 방법 연구 (A Study on the Inventive Problem Solving Method for Reliability Assurance of Product Development Process using the TRIZ)

  • 김종걸;이석준;김형만
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2008년도 추계학술대회
    • /
    • pp.633-639
    • /
    • 2008
  • Recently, product-reliability and process-reliability in product development processes has been regarded as an important issue in many manufacturers. TRIZ which is theory for inventive solving is required to obtain reliability of each process. To solve the technological problems, TRIZ provides problems can be occurred in product development processes as a contradiction matrix based on 40 creative invention principles with alternatives for physical and technological contradiction. This paper suggests the method for inventive solving to ensure the reliability assurance of product development processes based on TRIZ.

  • PDF

QFD와 TRIZ의 통합에 의한 설계 단계에서의 창의적 문제 해결 방안 (Integration of QFD and TRIZ to Solve the Inventive Problem in the Design Process)

  • 정해성
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제13권3호
    • /
    • pp.153-163
    • /
    • 2013
  • QFD(Quality Function Deployment) is a very important tool to improve market share by reducing the gap between the voice of customer and the product's performance. But QFD is not a problem solving tool, although it is very useful in identifying what has to be solved or improved in order to meet the customer's desires. TRIZ has proved to be a very strong tool to solve the difficult problems that requires inventive thinking. QFD integrated with TRIZ becomes hot research recently. But merely linking between HOQ(House of Quality) in QFD and the contradiction matrix in TRIZ can not provide designers with a concrete method to solve the technical problem in the design process. Practically, the contradiction matrix and 40 inventive principles are not helpful for solving the technical problem. To solve the technical problem using TRIZ, a search for the tool and the object involved in the problem is made, from which the wanted result should be derived. A practical method to integrate QFD and TRIZ is proposed in this paper.