• Title/Summary/Keyword: Continuum numerical analysis

Search Result 216, Processing Time 0.029 seconds

An Experimental and Numerical Study on the Thermally Induced Residual Stress Effect in Metal Matrix Composites (열처리시 발생되는 잔류응력이 금속복합체에 미치는 영향에 관한 실험 및 수치해석적 연구)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.108-117
    • /
    • 1997
  • A continuum analysis has been performed for the application to the thermo-elasto-plastic behavior in a discontinuous metal matrix composite. an FEM (Finite Element Method) analysis was implemented to obtain the internal field quantities of composite as well as overall composite behavior and an experiment was demonstrated to compare with the numerical simulation . As the procedure, a reasonably optimized FE mesh generation, the appropriate imposition of boundary condition , and the relevant post processing such as elastoplastic thermomchanical analysis were taken into account. For the numerical illustration, an aligned axisymmetric single fiber model with temperature dependent material properties and precipitation hardening effect has been employed to assess field quantities. It was found that the residual stresses are induced substantially by the temperature drop during the thermal treatment and that the FEM results of the vertically and horizontally constrained model give a good agreement with experimental data.with non-woven carbon mat is about 24% higher than that of composite materials without non-woven carbon mat. Transverse tensile strength and torughness also increase by inserting non-woven carbon mat between layers.

  • PDF

Numerical investigation of the hysteretic response analysis and damage assessment of RC column

  • Abdelmounaim Mechaala;Benazouz Chikh;Hakim Bechtoula;Mohand Ould Ouali;Aghiles Nekmouche
    • Advances in Computational Design
    • /
    • v.8 no.2
    • /
    • pp.97-112
    • /
    • 2023
  • The Finite Element (FE) modeling of Reinforced Concrete (RC) under seismic loading has a sensitive impact in terms of getting good contribution compared to experimental results. Several idealized model types for simulating the nonlinear response have been developed based on the plasticity distribution alone the model. The Continuum Models are the most used category of modeling, to understand the seismic behavior of structural elements in terms of their components, cracking patterns, hysteretic response, and failure mechanisms. However, the material modeling, contact and nonlinear analysis strategy are highly complex due to the joint operation of concrete and steel. This paper presents a numerical simulation of a chosen RC column under monotonic and cyclic loading using the FE Abaqus, to assessthe hysteretic response and failure mechanisms in the RC columns, where the perfect bonding option is used for the contact between concrete and steel. While results of the numerical study under cyclic loading compared to experimental tests might be unsuccessful due to the lack of bond-slip modeling. The monotonic loading shows a good estimation of the envelope response and deformation components. In addition, this work further demonstrates the advantage and efficiency of the damage distributions since the obtained damage distributions fit the expected results.

Review on Methods of Hydro-Mechanical Coupled Modeling for Long-term Evolution of the Natural Barriers

  • Chae-Soon Choi;Yong-Ki Lee;Sehyeok Park;Kyung-Woo Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.429-453
    • /
    • 2022
  • Numerical modeling and scenario composition are needed to characterize the geological environment of the disposal site and analyze the long-term evolution of natural barriers. In this study, processes and features of the hydro-mechanical behavior of natural barriers were categorized and represented using the interrelation matrix proposed by SKB and Posiva. A hydro-mechanical coupled model was evaluated for analyzing stress field changes and fracture zone re-activation. The processes corresponding to long-term evolution and the hydro-mechanical mechanisms that may accompany critical processes were identified. Consequently, practical numerical methods could be considered for these geological engineering issues. A case study using a numerical method for the stability analysis of an underground disposal system was performed. Critical stress distribution regime problems were analyzed numerically by considering the strata's movement. Another case focused on the equivalent continuum domain composition under the upscaling process in fractured rocks. Numerical methods and case studies were reviewed, confirming that an appropriate and optimized modeling technique is essential for studying the stress state and geological history of the Korean Peninsula. Considering the environments of potential disposal sites in Korea, selecting the optimal application method that effectively simulates fractured rocks should be prioritized.

Finite Element Analysis of Multi-Stage Deep Drawing Process for High Precision Rectangular Case with Extreme Aspect Ratio (세장비가 큰 사각컵 디프 드로잉의 유한요소 해석)

  • Ku T.W.;Ha B.K.;Song W.J.;Kang B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.274-284
    • /
    • 2002
  • Deep drawing process for rectangular drawn section is different with that for axisymmetric circular one. Therefore deep drawing process for rectangular drawn section requires several intermediate steps to generate the final configuration without any significant defect. In this study, finite element analysis for multi-stage deep drawing process for high precision rectangular cases is carried out especially for an extreme aspect ratio. The analysis is performed using rigid-plastic finite element method with an explicit time integration scheme of the commercial program, LS-DYNA3D. The sheet blank is modeled using eight-node continuum brick elements. The results of analysis show that the irregular contact condition between blank and die affects the occurrence of failure, and the difference of aspect ratio in the drawn section leads to non-uniform metal flow, which may cause failure. A series of experiments for multi-stage deep drawing process for the rectangular cases are conducted, and the deformation configuration and the thickness distribution of the drawn rectangular cases are investigated by comparing with the results of the numerical analysis. The numerical analysis with an explicit time integration scheme shows good agreement with the experimental observation.

  • PDF

Design Sensitivity Analysis and Topology Optimization Method for Power Flow Analysis at High Frequency (고주파수대역에서 파워흐름해석법을 이용한 구조물의 설계민감도 해석과 위상최적설계)

  • 박찬영;박영호;조선호;홍석윤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.119-126
    • /
    • 2004
  • A continuum-based design sensitivity analysis and topology optimization methods are developed for power flow analysis. Efficient adjoint sensitivity analysis method is employed and further extended to topology optimization problems. Young's moduli of all the finite elements are selected as design variables and parameterized using a bulk material density function. The objective function and constraint are an energy compliance of the system and an allowable volume fraction, respectively. A gradient-based optimization, the modified method of feasible direction, is used to obtain the optimal material layout. Through several numerical examples, we notice that the developed design sensitivity analysis method is very accurate and efficient compared with the finite difference sensitivity. Also, the topology optimization method provides physically meaningful results. The developed is design sensitivity analysis method is very useful to systematically predict the impact on the design variations. Furthermore, the topology optimization method can be utilized in the layout design of structural systems.

  • PDF

Optimal Design of Vehicle Passenger Compartment (차량승객실의 최적설계)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.60-66
    • /
    • 1999
  • This study is to develop design sensitivity analysis method based on continuum theory for the actual buckling load of vehicle passenger compartment with respect to sizing design variables. For nonlinear structural analysis, both geometric and material nonlinear effects are considered. The total Lagrangian formulation for incremental equilibrium analysis and one-point linear eigenvalue problem for buckling analysis are utilized. Numerical methods are presented to evaluate design sensitivity expressions, using structural analysis results from FEM code. Optical design of vehicle passenger compartment with buckling constraint solved using Gradient projection method.

  • PDF

Numerical Approach for Frequency-Shifting Analysis of Electrostatic Micro-Mechanial Actuator (정전기력을 이용한 미소기전 구동기의 고유치 변화 해석에 관한 연구)

  • Lee, Wan-Sul;Kwon, Kie-Chan;Kim, Bong-Kyu;Cho, Ji-Hyon;Youn, Sung-Kie
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.854-859
    • /
    • 2001
  • An eigenvalue analysis of a tunable micro-mechanical actuator is presented. The actuator is modeled as a continuum structure. The eigenvalue modified by the tuning voltage is computed through the linearization of the relation between the electrostatic force and the displacement at the equilibrium. A staggered algorithm is employed to perform the coupled analysis of the electrostatic and elastic fields. The stiffness matrix of the actuator is modified at this equilibrium state. The displacement field is perturbed using an eigenmode profile of the actuator. The configuration change of the actuator due to perturbation modifies the electrostatic field and thus the electrostatic force. The equivalent stiffness matrix corresponding to the perturbation and the change in the electrostatic force is then added to stiffness matrix in order to explain natural frequency shifting. The numerical examples are presented and compared with the experiments in the literatures.

  • PDF

Shape Optimization of Piezoelectric Materials for Piezoelectric-Structure-Acoustic System (압전-구조-음향 연성계의 압전 액츄에이터 최적설계)

  • Wang, Se-Myung;Lee, Kang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1627-1632
    • /
    • 2000
  • Recently, piezoelectric materials have attracted considerable attention because of its self-sensing and actuating properties. To model smart structures, numerical modeling of structures with piezoelectric devices is essential. As many factors affect the performance of smart structures, optimization of these parameters is necessary. In this paper, the shape design sensitivity analysis of the 3D piezoelectric and structural elements is developed and shape optimization is performed. For the evaluation of the sensitivity, the finite element method is used. For the shape sensitivity, the domain velocity field is calculated. An acoustic cavity model is presented as a numerical example to study the feasibility of the formulation. The continuum sensitivity is compared with the results of the finite difference method by ANSYS. And the sequential linear programming (SLP) algorithm is used as the optimization algorithm.

  • PDF

Shape Optimization of Electromagnetic System using Level Set Method (전자기 시스템에서 Level Set Method를 이용한 최적화)

  • Kim, Young-Sun;Choi, Hong-Soon;Park, Il-Han;Lee, Ki-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.623-624
    • /
    • 2008
  • We present a level set method for numerical shape optimization of electromagnetic systems. The level set method does not only lead to efficient computational schemes, but also is able to handle topological changes such as merging, splitting and even disappearing of connected components. The velocity field on boundaries is obtained by a shape derivative of continuum sensitivity analysis using the material derivative concept and an adjoint variable technique. Two numerical results of dielectric optimization between electrodes showed that the level set method is feasible and effective in solving shape optimization problems of electromagnetic systems.

  • PDF

Computation of Dynamic Stress in Flexible Multi-body Dynamics Using Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 탄성 다물체동역학 해석에서의 동응력 이력 계산에 관한 연구)

  • 서종휘;정일호;박태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.114-121
    • /
    • 2004
  • Recently, the finite element absolute nodal coordinate formulation (ANCF) was developed for the large deformation analysis of flexible bodies in multi-body dynamics. This formulation is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. In this paper, a computation method of dynamic stress in flexible multi-body dynamics using absolute nodal coordinate formulation is proposed. Numerical examples, based on an Euler-Bernoulli beam theory, are shown to verify the efficiency of the proposed method. This method can be applied for predicting the fatigue life of a mechanical system. Moreover, this study demonstrates that structural and multi-body dynamic models can be unified in one numerical system.