• Title/Summary/Keyword: Continuously Variable Transmission(CVT)

Search Result 85, Processing Time 0.021 seconds

A Study on the Practicability of A Power Splitted Continuously Variable Transmission with Single Mode (단일 모드를 갖는 동력분기식 무단변속기의 실용성에 관한 연구)

  • Seong, Sang-Hoon;Park, No-Gill;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.34-43
    • /
    • 2007
  • As a method to improve the poor torque capacity on the continuously variable transmission(CVT), power splitted devices(PSD) reducing the power entering into the transmission has been considered. But this kind of PSD requires for the variator to be a large coverage of the speed ratio (CSR) Since the CSRs of the well-known push belt or the toroidal ones are not enough large, the power splitted CVTs (PSCVTs) using them should be made with multiple modes. inevitably adding the do9 clutches and the associated accessories. In this paper a PSCVT with single mode is conceptually designed A new continuously variable unit (CVU) consisting of the paired inner and outer spherical rotors is used. The CVU has large CSR and excellent compactness. As a PSD. a variable bridge (VB) using the Planetary gear units (PGUs) is considered because it has an upper bound on the power ratio. An optimal design to minimize the effective efficiency of the PSCVT is carried out. Through the performance analysis on the designed model, good expectation on the practicability in the heavy vehicle system is shown.

Design and Performance Verification of Compound CVTs with 2K-H I type Differential Gear

  • Kim Yeon-Su;Park Jae-Min;Choi Sang-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.770-781
    • /
    • 2006
  • This paper defined design constraints for the compound CVTs (continuously variable trans-missions) by combining power-circulation-mode CVTs and power-split-mode CVTs, which were proposed for connecting 2K-H I-type differential gear to V-belt-type CVU (Continuously Variable Unit). The design constraints are the necessary and sufficient conditions to avoid geometrical interferences among elements in the compound CVTs, and to guarantee smooth assembly between the power-circulation-mode CVT and power-split-mode CVT Two com-pound CVTs were designed and manufactured in accordance with the design constraints. With these compound CVTs, theoretical analysis and performance experiments were conducted. The results showed that the design constraints were valid and effective design method, and that the designed compound CVTs had the improved performance.

Performance of CVTs Composed of a Differential Gear Unit and a V-belt Drive (차동기어장치와 V-벨트식 변속기구를 결합한 무단변속기의 성능)

  • 최상훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.199-208
    • /
    • 2003
  • Continuously variable transmission (CVT) mechanisms considered here combine the functions of a K-H-V type differential gear unit and a V-belt type continuously variable unit (CVU). As combining the functions of a K-H-V type differential gear unit and a V-belt type CVU, 24 different mechanisms are presented. Some useful theoretical formula related to speed ratio, power flow and efficiency are derived and analyzed. These mechanisms have many advantages which are the decrease of CVT size, the increase of overall efficiency, the extension of speed ratio range, and the generation of geared neutral.

Development of the Inner Spherical Traction Continuously Variable Transmission (내구면 접촉식 무단변속장치 개발)

  • Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.863-869
    • /
    • 2006
  • A new CVT, the inner spherical traction CVT (ISCVT) is introduced. Transmission of the most scooters is the self-controlled variable pulley-belt type of CVT having some disadvantages in the fuel consumption and the limitation of the transmittable power due to the slippage between the belt and pulley. Unlike this, ISCVT controlled directly by driver is more efficient and the contact mechanism having the same line of contact normal of the spherical rotors of different radii on common center causes that the power density and torque capacity are remarkably improved. The prototype with the specifications of 50cc scooter is designed and tested.

Analysis on the Behavior Characteristics According to the Design Parameters of Pressure Control Valve for CVT (무단변속기용 압력제어밸브의 설계 파라미터 변화에 따른 거동특성 해석)

  • Kim, Joong-Bae;Yoon, Young-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.198-204
    • /
    • 2007
  • The modelling and design of the PCV(Pressure Control Valve) for passenger car CVT(Continuously Variable Transmission) are considered in this paper. For analysis and design, the simulation model of the PCV is derived by using commercial software, AMESim. For a good design of the PCV, the sensitivity analysis for design parameters is carried out and the static and dynamic characteristics of the developed PCV are experimented. The simulation and experimental results are presented to show the validity of the design process.

Design of a Nonlinear Control System for Continuously Variable Transmission (무단 변속기를 위한 비선형 제어 시스템의 설계)

  • Park, Seong-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2348-2351
    • /
    • 2000
  • In order to operate SI(Spark Ignition) engine at the optimal fuel efficiency, it is necessary to use continuously variable transmission(CVT) which has more excellent fuel consumption property than transmissions of gear box types commonly used. This study introduces new type of nonlinear control approach to control precisely CVT including nonlinear characteristics. The nonlinear controller is basically composed of input-state feedback linearization, which can cancel the nonlinearities included in CVT on specific controllable area, and sliding-mode control. In this paper, good control performance of contrtol system with the nonlinear controller is confirmed with computer simulations.

  • PDF

Shifting Controller Design via Exact Feedback Linearization of a Spherical Continuously Variable Transmission (구체무단변속기의 비선형 피드백제어기 설계)

  • Kim, Jung-Yun;Kim, Kye-Ree;Park, Yeong-Il;Park, Chong-Woo;Lee, Jang-Moo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.110-115
    • /
    • 2001
  • The spherical CVT, intended to overcome some of the limitations of existing CVT designs, is marked by its simple kinematic design, improved efficiency of the shift actuator, and IVT characteristics, i.e., the ability of smooth transition between the forward, neutral, and reverse states without the need for any brakes or clutches. And it has been promised much possibility of energy savings and various applications for small power capacity machinery. Due to the nonlinearity of the spherical CVT shifting dynamics, however the original open-loop system is inherently unstable. Hence a feedback controller is necessary to make the system stable and to achieve effective tracking performance. To do this, we designed a feedback controller that cancels nonlinearities and transforms the original nonlinear system dynamics into a stable and controllable linear one, based on the input-state linearization method.

  • PDF

Analysis of Line Regulator Valve and Ratio Control Valve Considering CVT Shift Dynamics (CVT 변속 동역학을 고려한 라인 레귤레이터 및 변속비 제어 밸브의 응답 특성 해석)

  • 정근수;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.81-91
    • /
    • 2000
  • Dynamic models of line regulator valve(LRV) and ratio control valve (RCV) are obtained for an electronic controlled CVT. LRV and RCV are operated by variable force solenoid(VFS). Considering the CVT shift dynamics, oil pump's efficiency and saturation characteristics of VFS, simulations are performed and compared with test results. Simulation results are in good agreement with the experiments, which shows the validity of the dynamic models of LRV and RCV obtained. In addition, the effects of the orifice size in the exhaust port of RCV are investigated. Simulation results show that as the orifice size decreases, the residual pressure in the primary actuator increases which insures the large torque transmission capacity, meanwhile the duration time for the downshift increases.

  • PDF

Experimental and Parametric Study on the Output Coupled type Continuously Variable Transmission

  • Kim, Yeon-Su;Park, Jae-Min;Park, Sang-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.28-36
    • /
    • 2002
  • The continuously variable transmission (CVT) mechanism considered here is the output coupled type which combines the functions of a 2K-H I type differential gear unit and a V-belt type continuously variable unit (CVU). One shaft of the CVU is connected directly to the output shaft and another shaft of it is linked to the differential gear unit. It is shown that some fundamental relations (speed ratios, power flows and efficiencies) for twelve mechanisms previously described are valid by various experimental studies, six of them produce a power circulation and the others produce a power split. Parametric analysis is carried out in relation to the efficiency, speed ratio and power ratios in order to assist in the design of an optimum configuration. Some useful properties associated with power flow modes also are discussed in the output coupled type continuously variable transmission.

DESIGN AND CONSTRUCTION ASPECTS OF A ZERO INERTIA CVT FOR PASSENGER CARS

  • Van Druten, R.M.;Van Tilborg, P.G.;Rosielle, P.C.J.N.;Schouten, M.J.W.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.42-47
    • /
    • 2000
  • This paper concentrates on the design and construction aspects of a transmission for a mid-class passenger car with internal combustion engine. The transmission, consisting of a Continuously Variable Transmission (CVT) with a Van Doorne V-belt, a planetary gear set and a compact steel flywheel is used to prove the concept of mechanical torque assist. The design goal is to obtain a proof of concept transmission with maximal efficiency, using proven transmission technology. With the developed so called Zero Inertia CVT, the fuel economy of the car is improved by operating the engine at its fuel optimal operating line. To achieve a good vehicle acceleration response, the flywheel assists the powertrain mechanically.

  • PDF