• 제목/요약/키워드: Continuous speech recognition

검색결과 225건 처리시간 0.023초

통신망환경 한국어 공통음성 DB 구축 (Common Speech Database Collection for Telecommunications)

  • 김상훈;박문환;김현숙
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2003년도 5월 학술대회지
    • /
    • pp.23-26
    • /
    • 2003
  • This paper presents common speech database collection for telecommunication applications. During 3 year project, we will construct very large scale speech and text databases for speech recognition, speech synthesis, and speaker identification. The common speech database has been considered various communication environments, distribution of speakers' sex, distribution of speakers' age, and distribution of speakers' region. It consists of Korean continuous digit, isolated words, and sentences which reflects Korean phonetic coverage. In addition, it consists of various pronunciation style such as read speech, dialogue speech, and semi-spontaneous speech. Thanks to the common speech databases, the duplicated resources of Korean speech industries are prohibited. It encourages domestic speech industries and activate speech technology domestic market.

  • PDF

우리말 연속음성의 음절 분할법 (A Syllabic Segmentation Method for the Korean Continuous Speech)

  • 한학용;고시영;허강인
    • 한국음향학회지
    • /
    • 제20권3호
    • /
    • pp.70-75
    • /
    • 2001
  • 본 논문은 우리말 연속음성에 대한 음절단위 분할법을 제안한다. 이 방법은 다음 3단계로 이루어진다: (1) 음성의 시간영역 분할 파라메터인 피치, 에너지, ZCR, PVR을 이용하여 음성데이터를 자음, 자음. 묵음 단위로 라벨링하여 토큰 (Token)을 형성, (2) 형성된 토큰을 유한상태오토마타를 이용하여 한국어 음절구조로 파서 (Parser)를 설계하여 스캐닝 (Scanning), (3) 의사 음절핵 정보를 이용하여 두개 혹은 여러 개의 음절을 가지는 음성부분에 대한 재분할을 통하여 음절단위 분할 완성. 제안된 방법에 대한 성능 평가를 위해서 문장과 단어단위 연속음성에 대한 분할 실험결과 각각 73.7%와 85.9%의 분할률을 얻었다.

  • PDF

DMS 모델을 이용한 한국어 음성 인식 (Korean Speech Recognition using Dynamic Multisection Model)

  • 안태옥;변용규;김순협
    • 대한전자공학회논문지
    • /
    • 제27권12호
    • /
    • pp.1933-1939
    • /
    • 1990
  • In this paper, we proposed an algorithm which used backtracking method to get time information, and it be modelled DMS (Dynamic Multisection) by feature vectors and time information whic are represented to similiar feature in word patterns spoken during continuous time domain, for Korean Speech recognition by independent speaker using DMS. Each state of model is represented time sequence, and have time information and feature vector. Typical feature vector is determined as the feature vector of each state to minimize the distance between word patterns. DDD Area names are selected as recognition wcabulary and 12th LPC cepstrum coefficients are used as the feature parameter. State of model is made 8 multisection and is used 0.2 as weight for time information. Through the experiment result, recognition rate by DMS model is 94.8%, and it is shown that this is better than recognition rate (89.3%) by MSVQ(Multisection Vector Quantization) method.

  • PDF

신경회로망 이용한 한국어 음소 인식 (Korean Phoneme Recognition Using Neural Networks)

  • 김동국;정차균;정홍
    • 대한전기학회논문지
    • /
    • 제40권4호
    • /
    • pp.360-373
    • /
    • 1991
  • Since 70's, efficient speech recognition methods such as HMM or DTW have been introduced primarily for speaker dependent isolated words. These methods however have confronted with difficulties in recognizing continuous speech. Since early 80's, there has been a growing awareness that neural networks might be more appropriate for English and Japanese phoneme recognition using neural networks. Dealing with only a part of vowel or consonant set, Korean phoneme recognition still remains on the elementary level. In this light, we develop a system based on neural networks which can recognize major Korean phonemes. Through experiments using two neural networks, SOFM and TDNN, we obtained remarkable results. Especially in the case of using TDNN, the recognition rate was estimated about 93.78% for training data and 89.83% for test data.

음절핵의 위치정보를 이용한 우리말의 음소경계 추출 (Utilization of Syllabic Nuclei Location in Korean Speech Segmentation into Phonemic Units)

  • 신옥근
    • 한국음향학회지
    • /
    • 제19권5호
    • /
    • pp.13-19
    • /
    • 2000
  • 음성신호의 음소경계 추출방법 중 음소에 대한 사전지식 없이 음성 데이타, 혹은 특징벡터의 변화를 감지하여 음소경계를 추출해 내는 맹목 세그먼테이션은 연속음형 인식시스템이나 코퍼스 제작에 중요한 역할을 하며 많은 연구가 진행되어 왔다. 이러한 맹목 세그먼테이션 방법은 사전지식을 필요로 하지 않아 비교적 쉽게 접근할 수 있으나 음운학적인 지식, 또는 음소나 음소경계에 대한 지식과 경험 데이타 등을 이용하는 지식 기반 세그먼테이션 방법에 비해 성능이 좋지 못한 단점이 있다. 본고에서는 우리말의 연속 음성을 맹목 세그먼테이션해서 후보 경계를 추출한 다음, 음절핵의 위치정보를 이용하여 후보 경계를 후처리함으로써 세그먼테이션 효율을 높이는 방법을 제안한다. 제안하는 방법의 전처리과정에서는 확률적인 거리 모델을 이용한 클러스터링 방법을 이용하였으며, 후처리과정에서는 음절의 핵 사이에 위치할 수 있는 음소의 수는 제한된다는 선험적인 지식을 이용하였다. 실험결과, 제안하는 방법을 이용했을 때의 삽입오류는 맹목 세그먼테이션에 비해 약 25% 감소하였다.

  • PDF

음성인식을 위한 변환 공간 모델에 근거한 순차 적응기법 (Sequential Adaptation Algorithm Based on Transformation Space Model for Speech Recognition)

  • 김동국;장준혁;김남수
    • 음성과학
    • /
    • 제11권4호
    • /
    • pp.75-88
    • /
    • 2004
  • In this paper, we propose a new approach to sequential linear regression adaptation of continuous density hidden Markov models (CDHMMs) based on transformation space model (TSM). The proposed TSM which characterizes the a priori knowledge of the training speakers associated with maximum likelihood linear regression (MLLR) matrix parameters is effectively described in terms of the latent variable models. The TSM provides various sources of information such as the correlation information, the prior distribution, and the prior knowledge of the regression parameters that are very useful for rapid adaptation. The quasi-Bayes (QB) estimation algorithm is formulated to incrementally update the hyperparameters of the TSM and regression matrices simultaneously. Experimental results showed that the proposed TSM approach is better than that of the conventional quasi-Bayes linear regression (QBLR) algorithm for a small amount of adaptation data.

  • PDF

MIN 모듈을 갖는 준연속 Hidden Markov Model (Semi-Continuous Hidden Markov Model with the MIN Module)

  • 김대극;이정주;정호균;이상희
    • 음성과학
    • /
    • 제7권4호
    • /
    • pp.11-26
    • /
    • 2000
  • In this paper, we propose the HMM with the MIN module. Because initial and re-estimated variance vectors are important elements for performance in HMM recognition systems, we propose a method which compensates for the mismatched statistical feature of training and test data. The MIN module function is a differentiable function similar to the sigmoid function. Unlike a continuous density function, it does not include variance vectors of the data set. The proposed hybrid HMM/MIN module is a unified network in which the observation probability in the HMM is replaced by the MIN module neural network. The parameters in the unified network are re-estimated by the gradient descent method for the Maximum Likelihood (ML) criterion. In estimating parameters, the variance vector is not estimated because there is no variance element in the MIN module function. The experiment was performed to compare the performance of the proposed HMM and the conventional HMM. The experiment measured an isolated number for speaker independent recognition.

  • PDF

발산거리 기반의 신경망에 의한 가우시안 확률 밀도 함수의 군집화 (Guassian pdfs Clustering Using a Divergence Measure-based Neural Network)

  • 박동철;권오현
    • 한국통신학회논문지
    • /
    • 제29권5C호
    • /
    • pp.627-631
    • /
    • 2004
  • 음성인식 모델상의 GPDFs(Gaussian Probability Density Functions)을 효율적으로 군집화 할 수 있는 알고리즘이 제안되었다. 제안된 알고리즘은 데이터 사이의 거리 척도로 발산 거리를 사용하는 새로운 형태의 CNN(Centroid Neural Network)으로, 제한된 자원을 가지는 H/W환경의 음성인식에서 메모리 사용량을 축소하는 응용에 대한 실험 결과, 음성인식 모델인 CDHMM(Continuous Density Hidden Markov Model)에서 기존의 Dk-means(Divergence-based k-means)알고리즘을 이용한 방법과 비교하여 인식 성능의 유지와 함께 약 31.3%의 GPDFs를 더 축소할 수 있었고, 군집화 알고리즘을 적용하지 자은 전체 GPDFs를 사용한 경우와 비교해서 인식 성능의 유지와 함께 약 61.8%의 GPDFs를 압축할 수 있었으며, SNR 10㏈ 잡음 데이터에 대한 성능평가에서도 인식 성능이 유지될 수 있었다.

Speaker-Dependent Emotion Recognition For Audio Document Indexing

  • Hung LE Xuan;QUENOT Georges;CASTELLI Eric
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.92-96
    • /
    • 2004
  • The researches of the emotions are currently great interest in speech processing as well as in human-machine interaction domain. In the recent years, more and more of researches relating to emotion synthesis or emotion recognition are developed for the different purposes. Each approach uses its methods and its various parameters measured on the speech signal. In this paper, we proposed using a short-time parameter: MFCC coefficients (Mel­Frequency Cepstrum Coefficients) and a simple but efficient classifying method: Vector Quantification (VQ) for speaker-dependent emotion recognition. Many other features: energy, pitch, zero crossing, phonetic rate, LPC... and their derivatives are also tested and combined with MFCC coefficients in order to find the best combination. The other models: GMM and HMM (Discrete and Continuous Hidden Markov Model) are studied as well in the hope that the usage of continuous distribution and the temporal behaviour of this set of features will improve the quality of emotion recognition. The maximum accuracy recognizing five different emotions exceeds $88\%$ by using only MFCC coefficients with VQ model. This is a simple but efficient approach, the result is even much better than those obtained with the same database in human evaluation by listening and judging without returning permission nor comparison between sentences [8]; And this result is positively comparable with the other approaches.

  • PDF

인식 단위로서의 한국어 음절에 대한 연구 (A Study on the Korean Syllable As Recognition Unit)

  • 김유진;김회린;정재호
    • 한국음향학회지
    • /
    • 제16권3호
    • /
    • pp.64-72
    • /
    • 1997
  • 본 논문에서는 한국어 대용량 어휘 인식 시스템에 적합한 인식 단위에 대하여 연구 및 실험하였다. 특히 현재 인식 시스템의 인식 단위로 주로 사용되는 음소와 한국어의 특징을 잘 나타내는 음절을 선택하고, 인식 실험을 통해 음절이 한국어 인식 시스템의 인식 단위로서 적합한가를 음소와 비교하였다. 객관적인 비교 인식 실험 결과를 제시하기 위하여 동일한 남성 화자의 음성 데이터를 수집하고, 수작업 음소 경계 및 레이블링 과정을 거친 음성 데이터 베이스를 구축하였다. 또한 각 인식 단위에 동일한 HMM 기반의 훈련 및 인식 알고리즘을 적용하기 위해 Entropic사의 HTK (HMM Tool Kit) 2.0을 사용하였다. 각 인식 단위의 훈련을 위해 5상태 3출력, 8상태 6출력 HMM 모델의 연속 HMM (Continuous HMM)을 적용하였고, PBW 3회분, POW 1회분을 훈련에 사용하고 PBW 1회분을 각 인식 단위로서 인식하는 화자 종속 단어 인식 실험을 구성하였다. 실험 결과 8상태 6출력 모델을 사용한 경우 음소 단위는 95.65%, 음절 단위는 94.41%의 인식률을 나타내었다. 한편 인식 속도에서는 음절이 음소보다 약 25% 빠른 것으로 나타났다.

  • PDF