• Title/Summary/Keyword: Continuous sliding mode

Search Result 98, Processing Time 0.026 seconds

Unified Chassis Control for Improvement of Vehicle Lateral Stability (차량 횡방향 안정성 향상을 위한 통합섀시 제어)

  • Cho, Wan-Ki;Yi, Kyoung-Su;Yoon, Jang-Yeol
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1126-1131
    • /
    • 2007
  • This paper presents unified chassis control (UCC) to improve the vehicle lateral stability. The unified chassis control implies combined control of active front steering (AFS), electronic stability control (ESC) and continuous damping control (CDC). A direct yaw moment controller based on a 2-D bicycle model is designed by using sliding mode control law. A direct roll moment controller based on a 2-D roll model is designed. The computed direct yaw moment and the direct roll moment are generated by AFS, ESP and CDC control modules respectively. A control authority of the AFS and the ESC is determined by tire slip angle. Computer simulation is conducted to evaluate the proposed integrated chassis controller by using the Matlab, simulink and the validated vehicle simulator. From the simulation results, it is shown that the proposed unified chassis control can provide with improved performance over the modular chassis control.

  • PDF

Optimal Multidimensional Variable Structure Controller for Multi-Interconnected Power Systems (다수 연결된 전력계통에 대한 최적 다가변 구조 제어기)

  • Lee, Ju-Jang
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.9
    • /
    • pp.671-683
    • /
    • 1989
  • A controller of interconnected power systems is investigated using an optimal multidimensional variable structure control. The switching hyperplane of the variable structure stabilizer is obtained by minimizing a quadratic performance index in continuous-time. A special feature of the optimal multidimensional variable structure stabilizer is that, when it is operated in the so-called sliding mode, the system response becomes insensitive to changes in the plant parameters. A digital simulation is performed by a digital computer using the Advanced Continuous Simulation Language (ACSL) package, which shows that the dynamic performance of the power system in response to mechanical torque changes is improved when optimal multidimensional variable sturcture stabilizers are employed.

  • PDF

Implementation of binary position controller with continuous inertial external loop for BLDC motor (브러시 없는 직류전동기를 위한 연속관성형 외부루프를 갖는 바이너리제어기의 구현)

  • 김영조;김영석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.60-66
    • /
    • 1996
  • Brushless DC(BLDC) motor have been increasingly used in machine tools and robotics applications due to the reliability and the efficiency. In control of BLDC motor, it is important to construct the controller which is robust to parameter variations and external disturbances. Variable structure controller(VSC) has been known as a powerful tool in robust control of time varying systems. In practical systems, however, VSC has a high frequency chattering which deteriorates system performances. In this paper, a binary controller(BC) which takes the form of VSC and MRAC combined is presented to solve this problem. BC consists of the primary loop controller and the external loop controller to change the gain of primary loop controller smoothly. So it can generate the continuous control input and is insensitive to parameter variations in the given domain. To confirm the validity, various investigations of control characteristics for various design parameters in a position control system of BLDC motor are carried out. (author). 11 refs., 18 figs., 1 tab.

  • PDF

Continuous Time and Discrete Time State Equation Analysis about Electrical Equivalent Circuit Model for Lithium-Ion Battery (리튬 이온 전지의 전기적 등가 회로에 관한 연속시간 및 이산시간 상태방정식 연구)

  • Han, Seungyun;Park, Jinhyeong;Park, Seongyun;Kim, Seungwoo;Lee, Pyeong-Yeon;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.303-310
    • /
    • 2020
  • Estimating the accurate internal state of lithium ion batteries to increase their safety and efficiency is crucial. Various algorithms are used to estimate the internal state of a lithium ion battery, such as the extended Kalman filter and sliding mode observer. A state-space model is essential in using algorithms to estimate the internal state of a battery. Two principal methods are used to express the state-space model, namely, continuous time and discrete time. In this work, the extended Kalman filter is employed to estimate the internal state of a battery. Moreover, this work presents and analyzes the estimation performance of algorithms consisting of a continuous time state-space model and a discrete time state-space model through static and dynamic profiles.

THE NUTATION DAMPING CONTROL OF A SPACECRAFT (인공위성의 미동현상 제어에 관한 연구)

  • 이창훈
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.281-295
    • /
    • 1994
  • In this paper, the Variable Structure System(VSS) theory with new continuous switching dynamic equation is used to design an automatic controller for the active nutation damping in momentum bias stabilized spacecraft. In the application of VSS theory to a linearized multivariable system with the nutation damping systems, there exist some disadvantages such as how to determine the switching gains and how to reduce the chattering phenomina and reaching phase in input and state trajectories. To solve these drawbacks, this paper presents the continuous switching dynamic equation instead of the discontinuous switching logics to obtain the sliding mode. The new design approach is much simpler than the VSS theory. And there do not exist chattering phenomina in this method because the obtained control inputs are continuous. Simultaneously the reaching phase is reduced by a suitable choice of design factor.

  • PDF

Robust Control of Flexible Joint Robot Using ISMC and IDA-PBC (ISMC와 IDA-PBC를 이용한 유연관절로봇의 강인제어)

  • Asignacion, Abner Jr.;Park, Seung-kyu;Lee, Min-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1203-1211
    • /
    • 2017
  • This paper proposes a robust controller for flexible joint robots to achieve tracking performance and to improve robustness against both matched and mismatched disturbances. The proposed controller consists of a disturbance observer(DOB), passivity-based controller, and integral sliding mode controller(ISMC) in a backstepping manner. The DOB compensates the mismatched disturbance in the link-side and formulates the reference input for the motor-side controller. Interconnection and damping assignment passivity-based controller (IDA-PBC) performs tracking control of motor-side, and it is integrated to nominal control of ISMC to guarantee the over-all stability of the nominal system, while, matched disturbances are decoupled by the discontinuous control of ISMC. In the design of the link-side controller, PD type impedance controller is designed with DOB and this leads the continuous control input which is suitable to the reference input for the motor-side.

Active Stabilization for Surge Motion of Moored Vessel in Irregular Head Waves (불규칙 선수파랑 중 계류된 선박의 전후동요 제어)

  • Lee, Sang-Do;Truong, Ngoc Cuong;Xu, Xiao;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.437-444
    • /
    • 2020
  • This study was focused on the stabilization of surge motions of a moored vessel under irregular head seas. A two-point moored vessel shows strong non-linearity even in regular sea, owing to its inherent non-linear restoring force. A long-crested irregular wave is subjected to the vessel system, resulting in more complex nonlinear behavior of the displacement and velocities than in the case of regular waves. Sliding mode control (SMC) is implemented in the moored vessel to control both surge displacement and surge velocity. The SMC can provide a closed-loop system with performance and robustness against parameter uncertainties and disturbances; however, chattering is the main drawback for implementing SMC. The goal of minimizing the chattering and state convergence with accuracy is achieved using a quasi-sliding mode that approximates the discontinuous function via a continuous sigmoid function. Numerical simulations were conducted to validate the effectiveness of the proposed control algorithm.

A Study on the Speed Control of Electro - hydraulic Servo System under Load Disturbance (부하외란이 가해지는 전기.유압서보계의 속도 제어에 관한 연구)

  • 하석홍;권기수;이진걸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.26-32
    • /
    • 1993
  • The loads exerted on electro-hydraulic servo system are classified into inertial, viscous, and spring load. The additional load called disturbances is also exerted on system but is generally not modeled. To deal with these kinds of loads, it is necessary to maintain the continuous signal transfer, so we can construct compensator to satisfy control specifications using feedback signal such as displacement, velocity, acceleration and pressure known as state variables. In case of controlling the speed of hydraulic motor, we must keep up robust performance for the various loads and disturbances acted on the system. However, the load flow rate in the valve is characterized by nonlinearity so that traditional theory of linear control could not be expected to give the desired performance. In this paper, it is shown that speed controller of hydraulic motor gives a good command following and disturbance rejection performance by applying sliding mode theory as a way of robust control to the nonlinearity, variation of loads and disturbances.

  • PDF

Position Control of Permanent Magnetic Synchronous Motor Using Variable Structure System Theory (가변구조 제어이론에 의한 영구자석 동기모터의 위치제어)

  • Ki, S.W.;Chung, K.H.;Joo, S.W.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.552-554
    • /
    • 1991
  • In this paper is applied Sliding Mode method to position control system with Permanent Magnetic Synchronous Motor (PMSM), with realized a Digital Controller with Micro-Processor. And also, this paper proposes an Algorithm to compen-sate chattering of torque current to added controled parameter to continuous function of torque current.

  • PDF

Composite adaptive neural network controller for nonlinear systems (비선형 시스템제어를 위한 복합적응 신경회로망)

  • 김효규;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.14-19
    • /
    • 1993
  • In this paper, we proposed an indirect learning and direct adaptive control schemes using neural networks, i.e., composite adaptive neural control, for a class of continuous nonlinear systems. With the indirect learning method, the neural network learns the nonlinear basis of the system inverse dynamics by a modified backpropagation learning rule. The basis spans the local vector space of inverse dynamics with the direct adaptation method when the indirect learning result is within a prescribed error tolerance, as such this method is closely related to the adaptive control methods. Also hash addressing technique, similar to the CMAC functional architecture, is introduced for partitioning network hidden nodes according to the system states, so global neuro control properties can be organized by the local ones. For uniform stability, the sliding mode control is introduced when the neural network has not sufficiently learned the system dynamics. With proper assumptions on the controlled system, global stability and tracking error convergence proof can be given. The performance of the proposed control scheme is demonstrated with the simulation results of a nonlinear system.

  • PDF