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Optimal Multidimensional Variable Structure Controller for
Multi-Interconnected Power Systems

F H o
{(Ju-Jang Lee)

Abstract- A controller of interconnected power systems is investigated using an optimal
multidimensional variable structure control. The switching hyperplane of the variable struc-
ture stabilizer is obtained by minimizing a quadratic performance index in continuous-time.
A special feature of the optimal multidimensional variable structure stabilizer is that, when
it is operated in the so-called sliding mode, the system response becomes insensitive to
changes in the plant parameters. A digital simulation is performed by a digital computer
using the Advanced Continuous Simulation Language(ACSL) package, which shows that
the dynamic performance of the power system in response to mechanical torque changes is
improved when optimal multidimensional variable structure stabilizers are employed.

1. Introduction

From the early 70’s, optimal control theory
has been applied to improve the dynamic
response of power system through excitation
control wusing constant state feedback
strategies[1] as well to determine
stabilizing singals for turbo-alternator models
including exciter and governor. Although
these approaches have been used for a single
machine infinite bus system, criticisms were
presented based on the following facts:(j)
the resulting scheme requries feedback of all
the state variables chosen to describe the
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dynamics of the system, (ii) the physical
measurements of some states are not easily
available, In answer to these criticisms,
several works applying optimal control theory
in power ststem stability have been developed
by feeding back only physically available and
measureable variables. But, in general, the
output feedback strategies depend on initial
conditions of plant states[2], several different
approaches have been presented to overcome
this dependance.

One of these different approaches is the use
of a performance index which is optimal in an
average sense for all impulse disturbances in
the system[3]. In the development of this
approach, several authors have used the
expectation states, from which constant and

671



dynamic output feedback gain controllers
have been derived. However, the use of output
feedback controllers involves complex
iterative algorithms with convergence
problems, and, its application for multi-
machine power system is complicated.

In[4], a suboptimal output feedback has
been suggested, neglecting the unmeasurable
outputs. Some authors have defined system
models in such a way that the matrix relating
vectors of outputs and states in invertible and
the state variables can be written in terms of
output variables[5]. This approach shows
that, by an adequate choice of feedback
variables and weighting matrices for the cost
function, considerable improvement of
machine response can be obtained. The
optimal state feedback controller has shown
to be more effective than the conventional
stabilizing signal because, for study of small
oscillations, the constant gains and dominant
eigenvalues do not change very much over a
wide range of operating conditions. The
complexity of the optimal controller scheme is
further increased if it is applied to a multi-
interconnected power system. Dynamic
couplings of multi-interconected power
systems must be always included in the
stabilization studies. The control signal for
each machine is a combination of all state
variables of the system. Then crossfeedback
signals among the generators are required. To
date, few such studies have been completed.

An extension of the single machine optimal
state feedback controller has been developed,
but, no consideration has been devoted to
difficulties of an actual implementation[6].
Two strategies of optimal controller have
been used in multi-machine power systems
with application to power system transients
and load frequency control{7]: (i) optimal
state feedback controller based on estimates
of all states of the system; (ii) optimal state
feedback controller based on feedback of a
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combination of known state variable and
estimated states. Also, damping signals
obtained by decentralized feedback of
available quantities at machine location have
been used to improve to dynamic behavior of
multi-machine power systems/[8]

Coordinated application and computation of
stabilizers in multi-machine power systems
have drawn much attention recently. For
example, Delmello et al.[9] is mainly
concerned with the selection of the generating
units to be equipped with stabilizers. In that
paper an eigenvalue analysis technique
sequentially indentifies effective stabilizer site
locations. The paper does not consider the
tuning of the stabilizer parameters. Eigenvalue
methods were also used in{10] for choosing
the generators at which stabilizers can be
effectively applied and for computing the
transfer function of these controllers. The
technique is based on the pole shifting
properties of infinitely small gain feedback
compensators in linear systems. It uses the
residues of an open loop transfer function to
compute the gain and phase of a stabilizer that
will approximately yield a specified increase
in damping for some mechanical mode of
oscillation. By repeatedly performing a single-
input single-output analysis, several stabilizers
can be computed. In[11] a sequential
algorithm for tunning parameters of
stabilizers in multi-machine power system is
proposed. At each stage of the design, a pole
assignment algorithm for single-input single-
output systems yields the parameters of a
stabilizer with fixed poles and structure which
assigns a given mode of oscillation.
Unfortunately, the sequential addition of
stabilizers disturbs previously relocated
eigenvalues. This undesirable effect could be
avoided in the algorithm suggested only by
using at each stage a stabilizer of increasingly
higher order, which is neither practical nor
theoretically desirable. An algorithm for
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simultaneously tunning the stabilizers of a
multi-machine power system is illustrated in

[12]. The iterative solution of algebraic
nonlinear equations provides the “optimal”
settings of these regulators which structure is
fixed. Here the notions of synchronizing and
damping torques are used rather than more
system oriented procedures even if the
determination of the stabilizer settings were
treated as an eigenvalue problem. The
analytical power of linear algebra is lost so
that it becomes a nontrivial task to extend the
ideas to large systems or to more detailed
machine models. In all the papers that have
been presented there were claims made that a
patricular technique was superior for
designing and tuning controllers for damping a
multi-machine system,

On the other hand, one of the areas of
control theory which has been developed
rapidly over the last two decades in that of
Variable Structure Systems(commonly abbre-
viated as VSS). The theory, which has been the
subject of extensive research by Emelyanov in
the USSR, provides a new approach to the
control problem of linear time-varing plants
through the enforcement of an invariant
motion known as a sliding regime. The
formation of such a regime is achieved by
constraining the state point of the system to
move on a predetermined hyperplane(or
switching plane) in space thus giving a
response which is insensitive to plant
parameter variations and external disturba-
nces[13, 14]

Research in Variable Structure Systems has
so far been largely theoretical and has dealt
specifically with the mathématical conditions
leading to a stable sliding regime. As with any
new theory, a credibility gap exists between
the theory and application. This gap may only
be bridged with a detailed investigation of test
cases. The variable structure controller is
slightly more complex than a fixed structure

chf AUE AN Bol e HE cpopE FEA O]

design based on standard methods such as
state feedback of frequency response
technique, but is a great deal less complex
than some adaptive designs. Further, the
decision type structure of the Variable
Structure Controller make it attractive for
implementaion as a micro computer program.

A practical for variable structure controller
using variable structure theory has barely
been reported in the literature[15, 16] Most
approaches have concerned a single power
plant, without considering optimal control
theory in multi-interconnected power plants.

The object of this study is to demonstrate
the effectiveness of the developed optimal
multidimensional variable structure control in
enhancing the dynamic performance of the
presently used optimal intergral power system
stabilizers.

2. Synthesis of Optimal Multidimensio
-nal Variable Structure

Utkin{17] considers the problem of
designing a multidimensional system with
variable structure described by the equation
(1). The control function is piecewise linear of
the form (2) with switching of the coefficients
¥.; occuring on the planes ¢.(x) =0. The ¢,{x)
are the components of the vector

¥=Ax+Bu Y]
k
u:~§1§”ix,v 1=k=n—1
@ if x:0>0 (2)
111',-:[ l if x.0<0
Bi !
where

n-1
o= };1 Cixitxn
Gi(JC) = C.~Tx,
where C;7 is called the its switching vector.
In designing such systems, one usually

chooses the controls of that they give rise to
the sliding mode on the intersection of the

i=1,2,,n (3)
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discontinuity surfaces ¢=0. In this chapter we
consider the problem of choosing a matrix C,7
and switching vector ¥;; such that this sliding
motion has desirable properties. The sliding
equations in state-space systems and design
procedures are proposed in the next section.

2.1 Sliding in State-Space Systems

To achieve the invariance conditions of a
sliding motion, it was shown that it is
necessary to obtain instantaneous values of
the coordinate as well as its derivatives to the
nth order which restricts the application of the
technique to plants in phase-variable form.
Drazenovic[18] has shown that VSS can be
extended to encompass systems with more
general structures, and using a state-space
representation of linear systems has proved
that a sliding motion can be realized using
state-variables.

2.2 Sliding Equations

The following multi input system described
by a set of first order differential equation is
considered in equation (1). The switching
hyperplane is defined by a linear combination
of the states in equation (3). In an idea! sliding
mode, the phase point does not leave the
hyperplane, hence the phase velocity is given
by,

6=C"x=0 (4)
Substituting x in equation (1) gives,
CTAx+ C'Bus=0 (5)

where u; is the average value of the control
input in the sliding mode, and is determinable
uniquely from equation (5),

us=—(C™B)'CTAx (6)

and substituting this value of %, in (1) gives
the sliding mode equations,

Xi=Xi+1 Z:L,n*Z]
n-—~1

n-17 — 21 Ci%i
&
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x=[I-B(C™B)™'C ][Ax]] ®)

CTx=0
Comparing equation (7) with equation (8), it
can be seen that the latter is not completely
independent of the plant’s parameters. The
stabilizing signals are

u=\u, sz, -, tm]” (9)

where

Ui—— ZP',-Tx= - §=:"1 ?Fijx,-,
i=1,2,,m (10)

and

v,=

o it 2;00>0, i= y
[a it x;0:,>0, i=1,2,-, m (11)

/9.'_,' if x,~o.-<0, ]':1, 2, LR

When 4 is an X1 input coupling vector, it can
be shown that a sliding regime exists on the
hyperplane ¢=0 if,

Gi>?11;[crai"Ci(CTﬂn)]
i‘—“l, R k (12)

Bi<—cl7b—[CTa,-— c{Can)]

and
Crai:ci(CTan) i:k+1, e, n—1

where g, are the column vectors of the plant
matrix A. The equality constraint of (12)
vanishes when 2=#—1. Assuming that £=#
—1 and that A4 is a time verying matrix with
step-wise changes in its elements, then if
conditions expressed in (12) are fulfilled for all
values of ¢g,;, a sliding regime will exist on the
defined hyperplane. As indicated in equation
(8), the sliding equations will differ for
different A matrices ; the transient behaviour
of the sliding motion changes accordingly.
Figure (1) illustrates the trajectories in a third
order system. The conditions for complete
invariance to parametric and external
disturbances are discussed in the next section.

The control law described by equations (10)
and (11) can be expressed differently. Since,

=CTAx+ CTbu (13)
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sliding trajectory

Fig. 1 Sliding Trajectories for Different Plant

Matrices
hence
cT6=cT[CTAx+ CTbul=0 (14)
u>-—-(Ch)'CTAx if 67> —0 (15)
and

u< —(CTh) 'CTAx if 6T>+0

provided that C76>0. The inequalities of (15)
can be simplified further if C7 is chosen as the

, eigenvector row of A corresponding to
eigenvalue /, ie.

CTAx=A C™x=Ac (16)
The control law of (15) can thus be written as
u=—Klx:l sign ¢ a7

where ‘K’ is an arbitrary positive number, x,
is an arbitrary state variable and A is assumed
negative. The C7 vector must be such that the
sliding equaticns described by (8) are stable.
An alternative way of selecting the C7
vector is through the pole assignment
procedure and starts with the determination of

k
a continuous control :;=-—>)@x; which
{=1

places (x—1) eigenvalues as close as possible
to some desired locations, where §; is the
average gain defined by,
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6i:ﬁ[CTaj“Cj(cTa")] (18)

solutions for C7 can be estimated using
equation (18) and the stability of the sliding
motion can then be checked. Design values for
CT and ¢; which result in satisfactory
responses are unlikely to be derived in the first
instance and several computations may be
required.

2.3 Invariance Conditions

Even though sliding occurs in the system of
(1), invariance to external and parametric
disturbances is not necessarily guaranteed.
External disturbances are included in the
analysis by modifying the state-space
equations of (1) to

i=Ax+butdf (19)

where 4 is ¢ nxl vector coupling the
disturbance £ to the system. The sliding mode
equation of

z=[I—b(C"H)CT[Ax+df]

o=C"x=0 (20)
The disturbance f disappears from the sliding
equations if,

[/—b6(CTH)'CT]df =0 (21)

It is shown in Appendix 2 that equation (21)

can be satisfied for all possible value of f if

rank[bd | =rank[5] (22)

i.e. the vector 4 is a linear combination of
vector p. In practical terms, condition (22)
demands that the points where the
disturbances and controls enter into the
system are the same.

The conditions for parametric invariance
can be derived in a similar manner if the plant
matrix A is represented by,

A=A, +A. (23)
where A, contains the variable elements and

A. the constant ones. The sliding mode
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sliding plane

sliding trajectory
Fig. 2 Invariance Conditions in Sliding System

equations become,
¥=[1 =b6(CTH)'CT)[Acx + Awx] (24)
Cx=0

Again the parameters included in the matrix

A, will disappear from the sliding mode
equations if the following is fulfilled,

[I—b(CTH)'CT]Awx =0 (25)
Equation (25) will be fulfiiled if,
rank[bA,]=rank[5] (26)

Figure (4) illustrates the invariance conditions
in a third order system ;the matrix A4, only
affects the initial conditions of the sliding
mode but has no influence on the sliding
trajectory.

Conditions (22) and (26) are automatically
met in systems (27) since all the rows of the
matrix A, and vectors b and 4 are zero except
for the last one.

£ =Xin1 i=1,2,,(n—1)

xn:’”iglaixi*bl qlel (27)

2.4 Derivation of Optimal multidimen-
sional Variable Structure Controller

The design procedures for selecting the
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constant switching vectors ¢; and variable
structure stabilizing signal ¥, follow in the
next sections.

2.4.1 Construction of the Equation in the
Sliding Mode Using a “Cheap” Control Theory
Define the coordinate transformation

Z2=Mx (28)
such that
0
MB= [ Bz] (29)

The matrix M of the first n-m rows is a basis
of a subspace orthogonal to the subspace
spanned by the vectors of B, a nonsingular » x
n matrix, and B, is a nonsingular mXm
matrix. Differentiating both sides of the
equation (28) with respect to time and then
substituting for the state equation (1), we can
get

2=MAM 'z+MBu (30)

Rearranging (30) using (29), the behavior of
system (1) in z space is described by the
equations

Zi=Anz1t+ Az

and (31)
Z22=Anz1tAnztBau

where A, Az, Az and Az are (n—m) X(n
—m), (n—m)Xm, mX(n—m) and mXm
submatrices making up the matrix MAM™,
respectively. By[141 it i« necessary in order to
obtain equations for tne sliding mode to solve
the systms of equations ¢(z)=0 and ¢(z)=0
for u and z,, substitute the solutions into the
original system, and the discard the last m
equations. The solution for i constitutes the
equivalent control problem. For system (1), (3),
(30) and (31) this procedure leads to the
equations

Z1=Anzi+ Az, (32)
O(Z):C121+C222:O (33)

where C, and C, are mX{n—m) and m X m
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submatrices of C7M ~, respectively, satisfying
the following condition

[C.Cl=C™M! (34)

The two equations (32) and (33) uniquely
determines the dynamic motion of the system
in the sliding mode over the intersection of the
switching hyperplanes ¢{z)=0. The subsys-
tem (32) may be regarded as an open loop
control system with state vector z;, and
control vector z,, the form of the control being
determined by the equation (25), that is,

z2:=—C2 'Cizn (35)

Therefore, the problem of designing an
optimal multidimensional variable structure
controller with certain desirable properties in
the sliding mode can be regarded as a state
feedback design problem.

2.4.2 Calculation of the Switching Vector
C. and Stablizing Signal ¥;; in z-Optimal
Sliding Modes

Consider the problem of minimizing the
quadratic performance index

J :—% [ " 27Qzal (36)

in the sliding mode, where ¢ is a real,
symmetric, and positive semidefinite matrix,
te is the time at which the sliding mode begins.
Thus t. generally depends on the initial state
and the switching hyperplane of the variable
structure system. This problem can be
interpreted as a linear optimal state regulator
problem for the system (32) which consists in
minimizing the functional

J= %"/:(zl7‘Q11z1+2z17leZz
+ZzTQ2222)dt (37)

with respect to z,, where Q.,, Q.; and @, are
(mn—m)x(n—m), (n—m)Xm and mXm
submatrices of (M )YTQM !, respectively.
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2.5 The Proposed Design Procedure
A design procedure of the variable structure
system can be formulated as follows:

(1) Find the coordinate transformation
matrix M in (28).

(2) Solve the algebraic matrix Riccati
equation for P.

(3) Calculate the switching vector (..

(4) Choose the equation for the switching
hyperplanes in the form

o=[CIIMx=Cx=0

(5) Compute the variable structure stabliz-

ing signal ¥ in equation (12).

3. State-Space Model of Power System

An important part of investigation system
stability and designing controllers is to
simulate the complete system with the state-
space formulation. State-space methods for
assessing stability are applicable to linearized
representations of the physical plant. If the
operation of the system under lage signal
operating is concerned, the linearized equat-
ions could be simulate on a digital computer
and plots of time domain transients obtained
for pre-selected parameters and disturbances
to the system. Advanced continuous
simulation language(ACSL) programs are used
extensively for this purpose in the simulation
of the electric multi-machine power system.

3.1 State-Space Model Including the
Voltage Regulator and Exciter

When the electromechanical oscillations are
of interest, as in this study, the turbine
dynamic can be ignored since the
corresponding time constants can be assumed
to be large compared with the period of these
oscillations. Therefore, the turbine and the
governor are not modelled here and each
generator is assumed to be driven by a
constant mechanical power. The excitation
system dynamics are included and the multi-
machine plant model is extended to include
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Fig. 3 Functional block diagram of a
synchronous machine with an exciter and
stabilizer.

them.

The detailed block diagram of the complete
model of a synchronous machine with an
exciter and stabilizer is shown in Fig. 3.

Assuming that each machine is equipped
with such an excitation system the following
vectors can be defined :

State VeClor = [46dwdEq AEr)" (38)

Irlp(l;:l >\ielc)tor u=[4Vres]

The state equations are :

f1=Ax+Bu

(Admittances in p.u. on 1000 MVA)

plant No 1

{Thermal )
360 | B
0.4257 j2.038
. 0923 | 0.1293+)0.7169
+j0.5313 ! |
Plant No 2 i Plant No 3
{Hydro) | 0.0628 (Hydro)
S i 30,4745 | -
ESOSJ - i L1673 J
0.1121 ‘ 0.4218-31.475

ik | |
R I

0.1782+].7998

0.0666
+70.3320

0.0926+j0.6508

| 0.2363+51.714

Fig. 4 Three Machine/Infinite Bus Power
System
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3.2 Example system studies

The layout of the system studies is shown
the three plant/infinite bus power
system(plant No.4 effectively represents an
infintebus) in Figure 4.

Each plant is represented by a single
equivalent machine with machines 1, 2 and 3
rated 360 MVA, 503 MVA and 1673 MVA
respectively. These ratings are used as base
values for the per unit data. Each machine was
provided with a static exciter(([EEE Type 1).
For the purposes of this study the linearized,
equations were reordered into the form (1). x is
the state vector comprising 48, dw:, AEq’
and 4E pp; for each machine, and » is the ihput
vector comprising of 4V,., of each machine.
The stabilizing signal ¢ and £ are calculated
by (12).

A= A1i3= a— Q15= Ae= Q7= Q18— d19
= 0'111:0’112:10, 012:60, Qie— "10,
ai10=—20

@21~ A22= Q23— A24= Q25— Q27— A28 — 29
= @211, 021221, 0'2225, Q26 = Q210= —D
@31~ 32— @33~ X34 — Q35— @36 — X37— 38
= @39 = @s10= A311 = @312 =800

5113313:/914:Blszﬁxs:,@'n:Bm:Bw
=B =B112=—10, Bi2=—60, B
:_10, ﬂnu: —20

B21=B23= B24= B25= P27 = B2s = B2o = Bo11
=B212 =1, B22=—5, Bas = Ba10=5
ﬁ31:83223332834:8352336:637:Bss
:339:/9310:5311:['?312:’—800

3.3 Digital Continuous System Simulation

Simulation of physical systems is a standard
analysis tool used in the evalution of hardware
design prior to actual construction. The
Advanced Continuous Simulation Langu-
age(ACSL) has been used for the purpose of
modeling systems described by time
dependent, transfer functions and nonliner
differential equations. Typical application
areas are control system design, missile and
aircraft simulation or fluid flow and heat
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Table 1. Response Data of 0.05 step change of 4T,

Plant Peak Value Rising Time Settling Time [Final Value(p.u.)at 10 sec
(p.u.) (sec.) (sec.)
Optimal 1 0.15 0.23 44 0.088
MVS 2 0.08 0.43 5.8 0.037
Controller 3 0.029 0.62 5.8 0.0148
1 0.15 0.23 8.2 0.087
Optimal 2 0.07 0.45 7.6 0.034
Controller 3 0.027 0.60 7.6 0.0139
transfer analysis.
ey 2. 4. 6. 8. U
. . L N N S S RS A R R R I R S SRR
3.3.1 Simulation Results .of Power System " ]
Stabilizer . .14
Representative dynamic performances of - g
the power system stabilizer are digitally e 12
simulated by a Univac 1100 system using the o F 1
. . A0 -
ACSL package. Graphic subroutine progr- & - o
am(GSP) plots follow accordingly. Table 1. ~ sk 1 us
shows the computer outputs of the simulated s L
programs when the system is subjected to a 0. E-UG’ UG
-
. 2. . . . 10 ot
.2[? T |'fvxv|w»4;yy-l‘ﬁi‘lirrﬁawr'\wvc 20 (SN .04
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= —.18 % o2 _ .02
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16 .16 0o 00
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< .osH / ! OX:;I ot .08 Fig. 6 Angie deviation in machine 2.
L iy i U b
gl ||V U 05 h in th hanical
R ] p-u. step change in the mechanica
vl J ] torque(4T) at the machine 1.
! j v The Y-axis scales are all per-unit(p.u.)
a7k 1o values shown in Figure 8 through Figure 10, in
REDIx) [S BFT. MY LONTROL ' .
j CREEN(+! 13 DPTIMAL CONTROL | A some plots, Figure 5-7 and 11 are all
0g -t din o bbb g radian(Rad.). The X-axis scales are all

TIME(SEC)
Fig. 5 Angle deviation in machine 1,
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times(sec.) from zero sec. to the maximum 10
sec.
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Fig. 7 Angle deviation in machine 3.

3.3.2 Summary of Simulation Results

According to the simulated time histories
shown in Figure 5 through 11, some observa-
tions and analyses are summarized as follows :

680
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The dynamic performance of the power
system stabilizer successfully
improved via excitation control by
using the optimal multidimensional-
variable structure (MVS) method. This
dynamic stability improvement can be
seen clearly when we compare the
optimal MVS stabilizer and the optimal
stabilizer from Figure 5 to Figure 11.

is

Figure 5, 6 and 7 respectively show the
dynamic responses of the angle
deviation (48) in machine 1, 2 and 3
when the system is subjected to 0.05 p.u.
step change inmechanical torque(d7T,)
at machine 1. Note that the Figure 5, 6
and Tthe responses obtained from using
the optimal power system stabilizer and
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Fig. 9 Angle deviation in machine 2.
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the optimal multidimensional-variable
structure stabilizer are all included for
comparison purposes.

(3) Figure 8, 9 and 10 respectively show the
dynamic responses of the angular
velocity deviation (dw) in machine 1, 2
and 3 when he system is subjected to 0.
05 p.u. step change in mechanical torque
(4T») at machine 1.

(4) The settling times of the optimal
multidimensional-variable structure
stabilizer appear to be a little longer
than the same case with the optimal
stabilizer, no matter what peak values
and rising times have. One of the
detailed comparison of the dynamic
responses is given in Table 1.

(5) Finally, Figure 11 show in three
comparison of machine 1, 2 and 3 all
together between the optimal contro-
llers and optimal multidimensional-
variable structure controllers when a
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step change in mechanical torque 47T
of 0.05 p.u. is considered. The most
effect has occured to machine 3. The
reason is 0.05 p.u. step change in
mechanical torque at machine 1.

All the above observations and analyses
indicate that the use of excitation control via
stabilizing signals does more quickly stabilize
the power system and improve the system
performance. It is possible to use further
control schemes to enhance the control
capability and further improve the power
system stability.

4. Conclusion

This research has shown ways in which
optimal multidimensional-variable struc-
ture(MVS) control technique may be used to
design improved stabilizers for power systems.
A procedure was presented to perform a
feasible design of optimal MVS controllers in
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actual power systems. The simulation results
shown in this investigation illustrate the
ability of optimal MVS designs to provide
good system damping in the presence of
mechanical torque changes.

The main purpose of this research has been
to study and clarify the control mechanism in
MVS for the power system stabilizer through
the simulation, and, to show how such systems
can be designed and made to operate
satisfactorilly. The MVS controlier behaves in
a similar way to an integral controller and has
the ability of shifting in average level over a
certain dynamic range defined by the control
law to compensate for disturbances on the
plant. In the case of an input disturbance, the
compensation is much faster than an
equivalent optimal linear control system. An
essential part of the controller was shown to
be the switching of the input reference.

Simulation studies show that the optimal
MVS power system stabilizer yields better
results that the optimal power system
stabilizer in the sense of dynamic performance
in response to a mechanical step change.
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