• Title/Summary/Keyword: Continuous rotation

Search Result 194, Processing Time 0.03 seconds

Moment redistribution of continuous composite I-girder with high strength steel

  • Joo, Hyun Sung;Moon, Jiho;Sung, Ik-Hyun;Lee, Hak-Eun
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.873-887
    • /
    • 2015
  • The continuous composite I-girder should have a sufficient rotation capacity (or ductility) to redistribute the negative bending moment into an adjacent positive bending moment region. However, it is generally known that the ductility of the high strength steel is smaller than that of conventional steel, and application of high strength steel can cause ductility problems in a negative moment region of the I-girder. In this study, moment redistribution of the continuous composite I-girder with high strength steel was studied, where high strength steel with yield stress of 690 MPa was considered (the ultimate stress of the steel was 800 MPa). The available and required rotation capacity of the continuous composite I-girder with high strength steel was firstly derived based on the stress-strain curve of high strength steel and plastic analysis, respectively. A large scale test and a series of non-linear finite element analysis for the continuous composite I-girder with high strength steel were then conducted to examine the effectiveness of proposed models and to investigate the effect of high strength steel on the inelastic behavior of the negative bending moment region of the continuous composite I-girder with high strength steel. Finally, it can be found that the proposed equations provided good estimation of the requited and available rotation capacity of the continuous composite I-girder with high strength steel.

Study on Plastic Deformation of Interior Support at the Continuous I-Beam Bridge (I-Beam연속교 내측지점의 소성변형에 관한 연구)

  • Chung, Kyung-Hee;Kim, Jin-Sung;Yang, Seung-Ie
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.146-152
    • /
    • 2002
  • The steel shows plastic deformation after the yield point exceeds. Because of overloads, the plastic deformation occurs at the interior support of a continuous bridge. The plastic deformation is concentrated at the interior support, and the permanence deformation at the interior support remains after loads pass. Because local yielding causes the positive moment at the interior support, it is called "auto moment". Auto moment redistributes the elastic moment. Because of redistribution, auto moment decreases the negative moment at the interior support of a continuous bridge. In this paper, the moment-rotation curve from Schalling is used. The Plastic rotation is computed by using Beam-line method, and auto moment is calculated based on the experiment curve. The design example is presented using limit state criterion.

Three-dimensional numerical parametric study of tunneling effects on existing pipelines

  • Shi, Jiangwei;Wang, Jinpu;Ji, Xiaojia;Liu, Huaqiang;Lu, Hu
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.383-392
    • /
    • 2022
  • Although pipelines are composed of segmental tubes commonly connected by rubber gasket or push-in joints, current studies mainly simplified pipelines as continuous structures. Effects of joints on three-dimensional deformation mechanisms of existing pipelines due to tunnel excavation are not fully understood. By conducting three-dimensional numerical analyses, effects of pipeline burial depth, tunnel burial depth, volume loss, pipeline stiffness and joint stiffness on bending strain and joint rotation of existing pipelines are explored. By increasing pipeline burial depth or decreasing tunnel cover depth, tunneling-induced pipeline deformations are substantially increased. As tunnel volume loss varies from 0.5% to 3%, the maximum bending strains and joint rotation angles of discontinuous pipelines increase by 1.08 and 9.20 times, respectively. By increasing flexural stiffness of pipe segment, a dramatic increase in the maximum joint rotation angles is observed in discontinuous pipelines. Thus, the safety of existing discontinuous pipelines due to tunnel excavation is controlled by joint rotation rather than bending strain. By increasing joint stiffness ratio from 0.0 (i.e., completely flexible joints) to 1.0 (i.e., continuous pipelines), tunneling-induced maximum pipeline settlements decrease by 22.8%-34.7%. If a jointed pipeline is simplified as a continuous structure, tunneling-induced settlement is thus underestimated, but bending strain is grossly overestimated. Thus, joints should be directly simulated in the analysis of tunnel-soil-pipeline interaction.

POSITIVELY EQUICONTINUOUS FLOWS ARE TOPOLOGICALLY CONJUGATE TO ROTATION FLOWS

  • Bae, Jong-Sook;Min, Kyung-Jin;Sung, Duk-Hyon;Yang, Seung-Kab
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.707-716
    • /
    • 1999
  • In this pater we study the continuity of rotation numbers of liftings of circle maps with degree one. And apply our result to prove that a positively equicontinuous flow of homeomorphisms on the circle $S^1$ is topologically conjugate to a continuous flow of rotation maps.

  • PDF

Continuous Fabrication Process of Rheology Material by Rotational Barrel Equipment (회전식 바렐 장치에 의한 레올로지 소재의 연속 제조 공정)

  • Seo P. K.;Jung Y. S.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.103-106
    • /
    • 2004
  • The new rheology fabrication process has been developed to rheo die casting and rheo forming process. Thixoforming process has disadvantages in terms of induction reheating process, scrap recycling, loss of raw material and cycle time. Therefore, to reduce the number of process, new rheology fabrication process with specially designed the rotational barrel type equipment has been proposed to apply in various part productions. The barrel type equipment, which could continuously fabricate the rheology materil, was specially designed to have a function to control cooling rate, shear rate and temperature. During the continuous rotation of barrel with a constant temperature, the shear rate is controlled with the rotation speed. The barrel surface has both the induction heating system and the cooling system to control the temperature of molten metal. By using this system, the effect of the rotation speed and the rotation time on the microstructure was widely examined. The possibility for the rheoforming process was investigated with microstructural characteristic.

  • PDF

Influence of Rice-soybean Rotation on Soil Chemical Properties and Crop Growth in Silt Loam Soil (미사양토에서 벼-콩 윤작재배가 토양화학성과 작물생육에 미치는 영향)

  • Lee, Deog-Bae;Yang, Chang-Hyu;Ryu, Chul-Hyun;Lee, Kyeong-Bo;Kim, Byeong-Su
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.209-213
    • /
    • 2006
  • This study was carried out to investigate the changes in soil chemical properties and yields of crops by rice-soybean rotation cropping system at silt loam soil. There were 4 rotation cropping systems; continuous rice cultivation, annual, biennial and triennial rotation of soybean and rice. There were little change in pH, organic matter, $Ca^{2+}$ and $K^+$ contents with decrease in available phosphate content in the continuous rice cropping. The cropping system of soybean-rice caused to increase in available $P_2O_5$, $K^+$ and $Ca^{2+}$ in the soil after harvest. Content of $NH_4-N$ in the soil also increased after the rotation of soybean than the continuous rice cropping in the soil during the rice growth period. These chemical change in the soil caused to increase rice growth in number of the panicles and the spikelet per square meter. The yield of rice was increased by the rotation with soybean, and was gradually increased in the triennial rotation of soybean and rice. But the yield of soybean was decreased in continuous cultivation for two or three years in the paddy field. It was recommended for annual rotation to prevent the yield of soybean from decrease.

Effect of Paddy-upland Rotation System on Soil Chemical Properties and Rice Yield (답전윤환형태별(畓田輪換形態別) 토양화학성(土壤化學性)과 수도생산성(水稻生産性) 변화(變化)에 관(關)한 연구(硏究))

  • Ahn, Sang-Bae;Motomatsu, T.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.3
    • /
    • pp.181-188
    • /
    • 1993
  • The effects of paddy-upland rotation and cropping system on the mineralization of soil organic nitrigen, on the change of organic matter and available phosphorus content in the soil, and on the rice yield and nutrients absorption were studied in Seokcheon fine-sandy loam soil. 1. In the incubation test mineralzed soil nitrogen and the nitrogen extracted by pH 7 phosphate buffer solutions were higher in the soils from every and two year rotation systems than continuous rice cultivation. In terms of cropping system potato-chiness cabbage-rice increased them more than soybean-rice system. 2. The change of soil organic matter and available phosphorus contents were not much in continuous rice cultivation, while in rotation system they decreased as the paddy-upland rotation frequency decreased. In terms of cropping system they decresed more in potato-Chinese cabbage-rice system compared with soybean-rice systems. 3. The rice yield was higher in the paddy-upland rotation system than that of continuous rice cultivation. However, the effects were decreased gradually every year, as shown by 26~20, 17~5, and 5~4% yield increase for first, second, and third year, respectively, in potato-Chinese cabbage-rice and soybean-rice system compared with continuous rice cultivation. 4. All the absorbed nutrient contents increased in every and two year rotation system compared with continuous rice cultivation. In terms of cropping system potato-Chiness cabbage-rice system increased them more compared with soybean-rice system.

  • PDF

Effect of Crop Rotation System on Soil Chemical Properties and Ginseng Root Rot after Harvesting Ginseng (인삼 연작지에서 윤작물 작부체계가 토양화학성 및 인삼뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Lee, Seung Ho;Park, Kyung Hoon;Jang, In Bok;Jin, Mei Lan;Seo, Moon Won
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.244-251
    • /
    • 2017
  • Background: The application of crop rotation systems may reduce the occurrence of soil-borne diseases by releasing allelochemicals and by subsequent microbial decomposition. Methods and Results: For reduction of ginseng root rot by the crop rotation system, after harvesting 6-year-old ginseng, fresh ginseng was grown along with continuous cultivation of sweet potato, peanut, and bellflower. Growth of 2-year-old ginseng was significantly inhibited in the continuous cultivation than in the first cultivation. Sweet potato, peanut and bellflower cultivations assisted in obtaining normal yields of ginseng in the first year after the harvest of 6-year-old ginseng. Salt concentration, potassium and sodium contents were gradually decreased, and, organic matter was gradually increased through cirp rotation. Phosphate, calcium and magnesium contents were not altered. The density of the root rot fungus was gradually decreased by the increase in crop rotation; however it was decreased distinctly in the first year compared to the second and third year. The severity of root rot disease tended to decrease gradually by the increase of crop rotation. Conclusions: Short-term crop rotation for three years promoted the growth of ginseng, however root rot infection was not inhibited significantly, although it was somewhat effective in lowering the density of the root rot pathogen.

Continuous Sutures for Microarterial Anastomosis (미세혈관 수술시 혈관개존율 향상을 위한 연구)

  • Jung, Young-Sik;Jeong, Jae-Ho;Choi, See-Ho;Seul, Jung-Hyun
    • Journal of Yeungnam Medical Science
    • /
    • v.3 no.1
    • /
    • pp.237-241
    • /
    • 1986
  • In clinical microsurgery, limitation of space often prohibits rotation of a double clamp in an end-to-end anastomosis, or shortage of length of the secondary vessel in an end-to-side anastomosis does not allow visualization of the back wall. In these situation, back wall repair is extremely difficult. To overcome this problem, we use continuous suture technique without rotation of double clamp for end-to-end and end-to-side anastomosis of the 40 rat femoral arteries. After continuous sutures for microarterial anastomosis, the following results were obtained: Continuous sutures are useful in anastomosis where there is unavoidable limited access to the posterior wall and for some of the larger vessels now being anastomosed in free flap and other reconstructive surgery.

  • PDF

Generalized One-Level Rotation Designs with Finite Rotation Groups Part II : Variance Formulas of Estimators

  • Kim, Kee-Whan;Park, You-Sung
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.1
    • /
    • pp.45-62
    • /
    • 2000
  • Rotation design is a sampling technique to reduce response burden and to estimate the population characteristics varying in time. Park and Kim(1999) discussed a generation of one-level rotation design which is called as {{{{r_1^m ~-r_2^m-1}}}} design has more applicable form than existing before. In the structure of {{{{r_1^m ~-r_2^m-1}}}} design, we derive the exact variances of generalized composite estimators for level, change and aggregate level characteristics of interest, and optimal coefficients minimizing their variances. Finally numerical examples are shown by the efficiency of alternative designs relative to widely used 4-8-4 rotation design. This is continuous work of Part Ⅰ studied by Park and Kim(1999).

  • PDF